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Foreword

These Proceedings of the Second Workshop on Formal
Specification and Verification of Ada, held at the Institute
for Defense Analyses (IDA), are composed in part of papers
and slides supplied by the speakers, and in part of summaries
of the talks and discussions edited from notes taken during
the Workshop.

The purpose of this second two-day workshop was to
continue discussions on 1issues raised in the initial work-
shop held in March 1985, to further identify current issues
in Ada verification, and to focus on what is needed to build
the foundations of an Ada Verification Technology.

At the end of the first workshop, several conclusions

were reached. First, there was general agreement that R&D
over the ©past several years has yielded some useful
techniques., Second, the participants determined that these

IDA Workshops would serve as a meeting place where a group of
experts could assess the current state-~-of-the-art, identify
promising research areas, monitor ongoing verification work,
promote the wuse of the evolving technology, and ensure that
valuable outputs from one area were fed 1into other areas.
Lastly, the participants decided that the desired product of
these workshops would be recommendations to various bodies to
coordinate and sponsor certain R&D activities.,

In an attempt to foster results from those attending
these workshops, working groups on special topics were
established. It was envisaged that the groups would prepare
material for the next workshop and, where appropriate, draft
their recommendations to be forwarded to the relevant
official bodies after discussion at that meeting. Working
groups were formed under the topics shown below.

SECURE SYSTEMS chaired by M. Zuk, MITRE Corporation

NEAR TERM VERIFICATION chaired by J. McHugh, Research
Triangle Institute

FORMAL SEMANTICS AND CONCURRENCY chaired by N. Cohen,
SofTech, Inc.

SPECIFICATION LANGUAGES chaired by F. von Henke,
SRI International

VERIFICATION IN LIFE CYCLES chaired by A. Marmor-Squires,
TRW, Defense Systems Group
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"OFFICIAL" CLUSTERS chaired by R. Platek, Odyssey Research
Agssociates, Inc.

As the time for convening the second workshop drew
closer, it became apparent that the above topics were really
focal areas rather than actual working groups. Interest in
the different groups was so imbalanced that there seemed a
need to combine some of them. At the same time, it became
apparent that the majority of the prospective participants
wanted to attend all sessions rather than being restricted to
one working group. Thus, Clyde Roby as General Chair, 1in
concert with the working group chairs, revamped the format
for the second workshop to allow plenary sessions for all
presentations and general discussions. By the end of the
second workshop, two new interest groups were formed to
replace the old working groups - SECURE SYSTEMS chaired by
Margie Zuk and Richard Platek, and FORMAL SPECIFICATION AND
SEMANTICS chaired by Norm Cohen and Friedrich von Henke.

The workshop was opened Tuesday aftermoon by Clyde Roby,
who welcomed all the participants and announced the change in
format from separate working groups to plenary sessions. The
program began with introductory talks given by Paul Cohen of
the Ada Joint Program Office (AJPO), John Faust of the Rome
Air Development Center (RADC), and Col. Joseph Greene of the
DoD Computer Security Center (DODCSC).

Paul Cohen stressed the importance that the AJPO places
on the development of Ada verification technology and
confirmed that the AJPO supports the efforts of this group.

John Faust followed with what he thought should be the
goals of these workshops. These goals included establishing
and nurturing an Ada verification peer review group,
identifying the state-of-the-art of verification,
recommending technical directions for Ada verification, and
coordinating Ada verification with other agencies,.

Col. Greene focused on the need for Ada verification to
support computer security, citing the 1lag in achieving
computer security as compared to communications security. He
indicated that President Reagan's National Security Decision
Directive 145 emphasizes the need for computer security R&D
as part of a national program to improve the security posture
of Automated Information Systems. Col. Greene then discussed
the near-term (5 yrs) and longer-term (15 yrs) goals within
DoD to deploy trusted systems and to achieve interoperability
of systems. Placing Ada and Verification 1in perspective,
Col. Greene discussed the importance of both to the DoD
program. Ada is important because it is the chosen 1language
for mission critical software for secure systems.
Verification is important because it will give us additional
assurances as to the trustworthiness of a "trusted” computer
base.
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The technical program began with Ann Marmor-Squires
presenting the charter of her working group and the key
issues concerning the role of verification in the “Life
Cycle.” These 1issues 1included defining the 1life cycle,
determining the cost of performing verification, identifying
the role of automated tools, and establishing how to begin
integrating verification into the life cycle.

Ann was followed by Karl Nyberg. Karl, standing in for
John McHugh, presented the focus of the Near Term working
group. This focus was on the adaptation of ~“existing
languages, tools, and methods to provide for formal
specification and verification of Ada. Issues 1included the
potential for language changes in 1988, and the need for Ada
formal semantics before Ada verification systems can be
built. There was an additional speaker from this group. Tom
Kraly, of IBM, spoke informally on the "Clean Room" approach,
which is based on the work of Harlan Mills. In this
approach, semi-formal, manual methods are wused during the
development process to avoid the introduction of errors from
the beginning.

The next speaker, Friedrich von Henke, discussed the
role of specification languages in verification. He
presented the charter of his working group and highlighted
topics which must be addressed. These topics included how to
specify concurrency and real-time properties, possibilities
for an Ada Specification Language, and the requirements on a
specification language. Norm Cohen completed the Tuesday
afternoon session with a proposal for a “conservative"”
implementation of Ada as a way to simplify Ada semantics.

The Wednesday morning session began with David Luckham's
proposal for Ada formal semantics that included the <concept
of two semantics; one, an "instrumented” compiler (capable of
explaining what it is doing when queried by a user) and the
other, an axiomatic proof system. This stimulating proposal
evoked a lengthy discussion,.

David was followed by Kurt Hansen of Dansk Datamatik
Center who was 1invited to speak by the Formal Semantics

Working Group. Kurt presented the European project to
develop a formal definition of Ada and provided drafts of
several documents on the project to the workshop
participants. Copies of most of the documents can be found

Appendix B, Certain papers were not available for release,
reproduction, and inclusion herein.

The morning session was completed by Norm Cohen, who
presented a notation that 1is a variation on Dijkstra's
notation and has particular advantages for Ada proof rules.
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Margie Zuk kicked off the Wednesday afternoon session by
presenting both the areas of concern and the goals of the

Secure Systems working group. The features of the Ada
Language that create concern about the design of secure
systems include language constructs, run-time support

libraries, and the issue of compiler wunpredictability. The
goals include better delineation of the features of Ada which

introduce security concerns, study of the “conservative"”
compiler introduced by Norm Cohen, and determination of the
language restrictions necessary for secure systems, Margie

invited two additional speakers to discuss Ada Run-time
Support Libraries. Juern Jurgens from Softech and Omar Ahmed
from Verdix each outlined the key features of their
companies' run-time support libraries.

The final day consisted of summaries by working group
chairs and recommendations for actions to be taken in the

area of formal verification of Ada. These recommendations
included:

a. Developing several formal semantics for Ada

“

b. Developing a "conservative” compiler and an
"instrumented” compiler

c. Experimenting with specifying programs in ANNA

d. Performing basic research in specifying concurrency,
real-time behavior, and floating point arithmetic

e. Developing "Ada oriented” requirements, designs, and
specification languages

f. Determining restrictions on Ada so that it can be
used for security

g. Studying the security issues of Ada Run-Time Support
Libraries (RSLs)

h. Identifying and tracking ongoing efforts in secure
Ada systems
John McHugh proposed four near~term efforts. These
were:
a. Prototype development
b. Investigation of semi-formal methods

c. Identification of Ada-specific verification problems

d. Identification of constraints on run-time support
and code generation
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1 TUESDAY AFTERNOON SESSION

l.1 Introductory Talks

The Workshop began with several short introductory talks.
Clyde Roby of the Institute for Defense Analyses (IDA) opened
the Workshop, and announced that a decision had been made to
change the Workshop's format. Originally, the six working
groups formed at the end of the first workshop were going to
meet in parallel sessions. However, once the working group
chairs got together, they decided to have their groups meet
serially so that everyone could attend every groups's talks.
Mr. Roby also also announced that an account (ADA-INFORMATION,
password Ada) had been created at USC-ECLB to serve as a clearing-
house for Ada-related activities.

Next, Paul Cohen of the Ada Joint Program Office (AJPO)
briefly described the AJPO. The five principal thrusts of the
AJPO are shown below:

a. Standards

b. Education and Training

c., Validation

d. Environments

e. Trusted Software and Verification

All of these efforts are heavily sponsored at the AJPO. Mr,
Cohen also mentioned that he is excited to see so much interest
in Ada verification because so little has been done in the area.
The next speaker was John Faust of the Rome Air Development
Center (RADC). He listed several goals of IDA's Ada verification
effort:

a. To establish an Ada verification peer review group

b. To identify the state of the art in Ada verification

C. To recommend technical directions for Ada verification

d. To coordinate Ada verification with other agencies (e.g.,
the AJPO and STARS Program Office)

The IDA effort should highlight computer security concerns, but
should not be limited to security. The effort should also
include the verification of properties other than access
control. Verification of both design ("Al" verification) and
code ("beyond Al" verification) should be addressed.
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1.2 Why the DoD Computer Center (DODCSC) is Interested in Ada
- Col. Joseph Greene, DODCSC

Telecommunications security and Automated Information Systems
Security (AISS) are converging. However, the two have different levels
of maturity. In telecommunications security, we have the new
technology:; it is primarily a matter of getting it distributed. AISS
technology is about 10-15 years behind telecommunications security, so
there is a need for research and development.

This convergence is recognized in the President's National
Security Decision Directive 145 (NSDD-145). 1In response to NSDD-145,
the DoD has formulated 5- and l4-year goals for AIS. The 1l5-year goal
is to establish interoperability within the DoD. The 5-year, mid-term
goal is to deploy trustable automated information systems using Common
Ada Program Support Environment (APSE) Interface Sets (CAIS's). To
accomplish the way industry designs and builds word processors, PCs,
minicomputers, mainframes, database management systems, local area
networks and network components, and multimedia systems. There is a 15-
year commitment to create a new technology base and distribute it to
industry.

The DoD Trusted Computer System Evaluation Criteria (CSC-STD-001-
83; a.k.a. the "Orange Book") defines certain fundamental requirements
for AISS. These requirements include (at various levels of trustedness)
a security policy, accountability (auditing), certain assurance methods,
and requirements for trusted configuration management (CM) and trusted
distribution. The C Division of systems primarily addresses
discretionary access control (DAC). Systems in the C Division are
subject to so-called "Trojan Horse" attacks. Higher divisions (B and 3)
address mandatory access control (MAC) which involves controlling access
to data labelled with National Security classifications. 1In these
higher Divisions, the Trojan Horse threat is countered by more rigorous
assurance methods (including formal verification for A Division) and
rigid configuration control.

There is a trade-off in near-term funding between formal
verification and CM technology. The technology base for formal
verification is at present very thin.

Ada comes in because it will be used for mission-critical software

in security systems. It is also an avenue to distribute trusted system

technology to the computer industry. The DODCSC supports the following
policy:

a. Use and support Ada standards.
b. Monitor and incorporate emerging standards.

c. Code entirely in machine-independent Ada.

d. Use Ada syntax and semantics to the maximum extent possible for
Descriptive Top Level Specifications (DTLS), Formal Top Level
Specifications (FTLS), and verification methodologies.
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f. Minimize text in documentation. ﬂ
! g. Validate Ada compilers for all machines used. D,
o Experience has shown that Ada provides significant savings in lines of E‘- s
,;“h code and cost. r:‘_‘
~
The Ada Security Task Force has been merged with the IDA effort. e
This Workshop is being used by the DODCSC as a forum to formulate issues o ¢
:-', and track resources which can be used to resolve those issues. ;,' i
w d
The slides for Col. Greene's presentation follow this page. f:k
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) 1.3 Verification and the Software Life Cycle A
~ - Ann Marmor-Squires, TRW o
£y
w3
Charter of the Working Group on the Role of

! Verification in the Life Cycle -
. a. Determine the appropriate role(s) for specification -
E§ and verification technology in the software ﬁ
development life cycle for Ada mission-critical }ﬁ

systems development. -
ey

Ea b. Describe the relationships between verification ::
technology and other analysis techniques used in N

o the life cycle. “~
.."F‘ .o\
o e

=~ C. Determine the automated support tools needed for the z
. successful application of the technology in its ~
-t proposed role(s). 7
d. Recommend means of incorporating verification C?

%% technology into the life cycle in an effective manner. ;y
e. Recommend near-term projects to be funded. =

}" ;,.-\
Eﬁ f. Coordinate efforts with the other working groups. Q:
<

) Verification should be viewed in a broader sense as one part 3
ii of a whole complex of methods, languages and tools used in the =
- software life cycle. It is important that verification be merged 3
with other methods to give better confidence in the resulting I
i system. ﬁ'
B .
‘..‘\' \*
The following issues are important to determining the role ~3)

' of verification in the life cycle: o
; s
- a. Definition of specification and verification technology. N
What exactly do we mean by formal specification and >
x- verification? What languages, methods and tools are }3
.t involved? s
Ky

o b. Relationship of verification to METHODMAN. ",
W, '_:1
- C. Is there only one 1life cycle? What are appropriate :;
- standards for the life cycle(s)? Ny
w d. How will verification be used in the specific application? ;
What properties does one want to verify about the —

o application? What other analysis techniques will be used in .
N addition to verification? -
9

»
ﬁi e. How much will it cost to do formal verification? ?:f
i

o s
-, W
ot -
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ﬁ f. Generic vs. specific methodology and support tools. 5
0 Verification will play a different role in the life cycle B
depending upon whether the technology being used is specific vr
d to the application (e.g., formal information flow tools for
security) or generic (e.g., a verification condition ]
.g generator). N
X g How do we get started on integrating verification into o
Q the life cycle? What funding is available for near-term -
: projects? o
P Configuration management (CM) is particularly important. f:
. Both the verified system and the tools used to verify it evolve. As -
i the system evolves, it may need to be re-~verified. The evolution
< of the verification tools must be managed so that new o
o verification technology can be incorporated without making v
re-verification more difficult (e.g., by incorporating a new
I verification paradigm which is inapplicable to the <
- system into the tools). T
i The question of the wuse of Ada in the development of the g
Strategic Defense Initiative (SDI) was discussed. Some members of R
- the audience felt that the group present at the Workshop should think ‘i
N about the implications of using Ada in SDI, while others felt that
f; the group already has more than enough to think about. No official =
- decision was made on the matter. -
>
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D l1.4 Near Term Solutions to Ada Verification
i - Karl Nyberg, Verdix Corp.

The focus of this Working Group is on adapting existing
languages, tools and methods for formal specification and
verification to verifying Ada. Examples of existing technology

p‘ include SPECIAL/HDM and Gypsy. There is, however, no fielded

i software which has been formally verified. Al systems have been
developed using existing technology, but have not been used

. extensively.

¢

One problem with developing near-term Ada verification
L’ systenms 1is that the language may change in 1988. It is not clear
what the extent of this change will be, so any Ada verification
system developed before then may become obsolete due to language
changes. The question is, should we start from scratch in 1988
- or build Ada verification systems now and try to adapt in 1988?

Several points were raised in answer to this question.
Ny First, by building verification systems now, we can discover some
> of the verification problems connected with Ada. This will also
provide experience with verifying Ada. Even if these early
near—-term systems are thrown away after 1988, the experience
gained will be valuable for building future tools. Second,
attempts to build and use systems will help to uncover some of
the "fuzziness” of ANSI/MIL-STD-1815A Ada Language Reference Manual,
(LRM) which will serve as input to the language change in 1988.
Near-term attempts to define a formal semantics for Ada will also
help to uncover "fuzzy"” Ada features.

-ty

- At this point, the question was raised whether a formal
semantics for Ada must be formulated before Ada verification
systems can be built. The general consensus of opinion was that
- a formal semantics for at least a part of Ada was necessary, but
- a formal semantics covering all of Ada was not. A formal
semantics expressed in terms of axioms and proof rules could be
5 constructed to cover a restricted subset of Ada. These axionms
Iy and rules could then be used to build a verification system,
- l.4.1 The IBM Clean Room Project e
- Tom Kraly, IBM gj&v
to e
N :‘r:‘.\
n. C:.-R
IBM has experimented with applying semi-formal methods
) manually (i.e., with no automated tool support) to improve s
i correctness of software. This project is called the "clean o
- room,"” and is based on the work of Dr. Harlan Mills. The {f}'
traditional approach to software correctness is to design and :12
] implement the software and then to find the bugs and fix them, g:
The IBM clean room project is an attempt to use semi-formal -
: methods during software development so as not to introduce errors DO
P
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2 d

in the first place. The project uses a semi-formal specification
language based on set theory. Informal rules of argument are
used to reason about software. Software is modeled as state
machines.

R E )

-
-~

The clean room project originated in IBM's Federal Systems
Division, but is now used throughout IBM, It has been used with
Program Design Language (PDL) Ada.
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1.5 Ada Specification Languages

3@ - Friedrich von Henke, SRI
WG
s
Charter of the Working Group -
! on Specification Languages for Ada R
-,
%3 The purpose of the Working Group is to discuss -
Ada-oriented specification languages, with the goal of Fﬁf
formulating requirements for such languages and making -
qs recommendations for further activities in this area. a7
> e
Specific topics to be addressed include: ;t}
E; a. The role of specifications and specification :2;
languages in the process of producing Ada -
. programs oy
“ i
% ~a

b. The requirements on a specification language (as N
opposed to the programming language or design :
languages) .

c. The state of the art of specifying Ada programs R
}j d. Identification of areas of the Ada language for Si'
. which specification techniques are lacking or N
insufficient RN
l. e. Alternative approaches to the design of L
specification languages for Ada lﬁl
A o
K As a result of the discussion, the Working Group will formulate NS
requirements for Ada~oriented specification 1languages and make ??
recommendations for further research and language design efforts, =
« The activities of the Working Group are to be h
. coordinated with related Working Groups, in particular
ﬁ‘ those addressing the issues of formal semantics of Ada
P and the role of verification in the software life .
cycle. e
?f It is impossible to do formal verification without a formal ;ﬁ5
specification language in which to state what you are proving. &:
s Therefore, to build an Ada verification system we must have an NN
;}? Ada specification language which is adequate to state the kinds )
- of properties we want to prove about Ada programs. "
’1 Specifications can be divided into several areas: ﬁf
Y A
a. Functional: The run-time behavior of the program E:
- '-(\
‘ b. Structural: Static relationships of various modules in a i

program O
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c. Performance: "Hard"” real-time properties
d. Security/Safety properties

An area which must eventually be addressed in an Ada
specification language is how to specify concurrency and
real-time properties. We have little experience in the area of
specifying real-time software. 1In addition, Ada was designed for
embedded systems so the specification language should also

be able to describe properties of the hardware. This is also an
area in which we have little experience.

The current state-of-the-art Ada specification language is
ANNA. ANNA currently lacks facilities to specify properties
related to concurrency. ANNA is a conservative extension of Ada
in that it attempts to use Ada syntax and philosophy as much as
possible. 1Is this the right approach? One can imagine three
possibilities:

a. The ANNA approach - make the specification language look as
much like Ada as possible, and don't depart from Ada in any
significant way.

b, Design a completely different language without attempting
to follow Ada.

c. Middle ground - use Ada syntax and philosophy as guidelines
but not as dogma.

Although ANNA currently falls into the first category, it could
be modified to fall into the third category. The danger in doing
this would be that one would have to modify the semantics while
keeping the same syntax. It would be better to modify both.

An argument in favor of staying as close to Ada as possible
is that this avoids possible incompatibilities between Ada and
its specification language. An argument in favor of not being
bound by Ada is that it may very well turn out that the
properties one wants to prove about a system are not easily
stateable in Ada.

A slightly modified form of ANNA is being used in European work o
on Ada. It would be desirable to have a single standard Ada
specification language (e.g., a standard version of ANNA). This
specification would help support reuseability of verified software >
since tools which process the standard specification language could
be used on code developed elsewhere.

The term "specification language” is somewhat "fuzzy."” It's -
not clear how a specification language differs from a design
language (i.e., Ada PDL). It is especially important to make this N

distinction clear in Ada. Some people believe that Ada is a
specification language. Ada, or an Ada PDL, may be regarded as a

20 !
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] design language, but it is not formal enough to be a ::’,:
&‘\ specification language. Specification languages must have a high }'.'"
’ degree of formality to support proofs., In addition, _
specification languages are supposed to say what the program does k:
' rather than how it is done. Using Ada or an Ada PDL might force x
- the specifier to overspecify the program, and would also make it A
difficult to specify at a high level of abstraction. It would be g
- best if the design language and the specification language were .-:
&Q the same language. o
' o
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1.6 Simplifying Ada Semantics by Restricting Implementers'
Options
- Norman Cohen, Softech

Defining a semantics for Ada is difficult because the

LRM leaves many things unspecified (e.g., parameter-passing
mechanisms, when exceptions are raised, what the effects of certain
pragmas are). Norm Cohen presented a proposal for a partial solution
to this problem. His proposal introduced the notion of a
conservative implementation of Ada. A conservative 1implementation
would be an implementation of full Ada, but with many of the
ambiguities of the LRM resolved in a straightforward way. Another
way to say this is that a conservative implementation is an
implementation which uses a more predictable compiler.

It was suggested that the restrictions that define a
conservative implementation might become part of the language
definition in 1988 or 1993,

The slides for Mr. Cohen's presentation follow this page.
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2 WEDNESDAY MORNING SESSION

2.1 A Proposal for Ada Formal Semantics
- David Luckham, Stanford

There are several reasons why one wants to have a formal
semantics for a programming language. First, it provides a
standard definition of the language and how the constructs behave
for both users and implementors of the language. Second, it
provides a basis for reasoning about programs.

There are several approaches to presenting a formal
semantics for a programming language that have been used in the
past:

a,. An 1interpreter for the language in the language. This is
what is done in LISP (page 72 of the LISP 1.5 Manual).

b. An operational definitionm in terms of abstract machines. An
example is the semantics of PL/I, which was defined in terms
of an abstract tree automaton in the mid 60's.

A denotational definition in .terms of Scott domains and
recursion equations. This definition was tried for Ada.
This denotational semantics did not include tasking.

An axiomatic definition in terms of a collection of axioms
and a set of proof rules for reasoning about programs. This
definition has been done for Pascal.

These approaches have various shortcomings. Formal semantics are
generally not "debugged” in the sense that they don't correctly
define the behavior of some constructs in some situations.,

Formal semantics generally do not cover all of the features of
the language (e.g., concurrency and real arithmetic). Formal
semantics are usually uninformative in that they are hard to read
and it is difficult to determine from the formal semantics how a
given program will behave.

Dr. Luckham's proposal for a formal semantics for Ada is
that there should be two different presentations of the Ada
semantics. The first presentation would be a standard
instrumented compiler. This would be a compiler which, in
addition to compiling programs, would also explain what it is
doing in response to users' questions. The second presentation
would be an axiomatic proof system which could be used to prove
programs with respect to specifications in some standard
specification language. Consistency of the two forms of
semantics would eventually need to be demonstrated.
Conceptually, the proof rules should be derivatives of the
semantics of the compiler; in practice, the two would probably be
developed in parallel.

v ety Ty v




N
‘ ﬁ, It is within the state of the art to build the front end of :j
Y a standard instrumented compiler. The code generator would :
\ require more work, particularly in the area of tasking. The f:
standard implemented compiler would not have to be an efficient CQ
. compiler; its primary purpose is to provide an executable, .
" informative presentation of the semantics of Ada. i:
~ To do the axiomatic proof system, we need to get more :g‘
- experience with specifying Ada programs and with proving o
properties of concurrent programs. On the basis of this Py
» experience, a preliminary standard specification language could .
e be defined, and a proof system could be built. The axiomatic b
- proof system would include specifications of a standard A
“ environment, (e.g., a standard I1/0 package). A test of the proof ﬁ
}f system would be to see if it could derive the expected behavior k{
b of the programs in the Ada compiler validation test suite, Lol
S Dr. Luckham's presentation generated a lively discussion with a .
" number of questions. Some concern was expressed that using an K
instrumented compiler to define the semantics of Ada would be :?
. overspecifying the language. One might wish to allow other compilers ':
Eﬁ which are instrumented differently than the standard compiler but are ‘]
nonetheless regarded as Ada compilers. For example, the Ada/Ed -
. compiler was done in SETL, with the arbitrary implementation choices }i
&: documented. VY
Concern was also expressed about the impact on verification o
ii of underspecifying the semantics of Ada. This is of particular X
. concern in the area of secure systems. Any indeterminacy in the —
semantics of Ada should be sufficiently controlled so that -
> meaningful proofs of security properties are possible. %r
. s
A .-’.

There was some doubt about being able to demonstrate
consistency between the two proposed semantics. Consistency
!! could be a problem if the semantics were developed independently.
o However, if the semantics were developed in parallel, consistency
could be maintained through mapping.

T

v v w0 w v -
"'u"l,f"‘

" Finally, there was some concern that the semantics might
become so mathematical that only an expert would be able to use

. them. The semantics should be written so that the general user

o, can get sensible answers from sensible questions. Whether or not

T an answer is sensible should be determined in your head or by

your peers.
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2.2 European Work on Ada Formal Semantics
- Kurt Hansen, Dansk Datamatik Center (DDC)

The DDC developed a formal definition (FD) of 1980 Ada in
1981-82 using the Vienna Development Method (VDM). This definition
was not as mathematically formal as it could have been--- there is no
formal definition of VDM itself. Nonetheless, a validated compiler
was derived from this FD.

Another activity of DDC was the RAISE project. This was a
project to develop Ada support tools, such as interpeters and
verification tools.

Previous work on formal definitions of Ada has used
denotational semantical style. These definitions are not very
readable, partly due to the fact that a denotational semantics always
specifies a complete model, which essentially forces you to
overspecify). One of the goals of current DDC work is to produce a
more readable style for an FD., Ultimately, DDC would like to be able
to derive a natural language explanation of the FD directly from the
FD., It is not intended that most people who want to wuse Ada will
read the FD. Most people will learn about Ada from books written by
people who have read the FD.

Another goal is to provide an unambiguous definition of Ada. The
LRM has many ambiguities which must be resolved in the process of
creating an FD., The approach that DDC has taken is that where there
is an ‘obvious way to resolve an ambiguity, it is incorporated into
the FD. When there is no obvious resolution, some resolution 1is
chosen and an explanation of the ambiguity is included in the FD. The
FD has also been cross-referenced to the LRM.

The technical description of the FD is divided into static
semantics and dynamic semantics. The static semantics deals with the
relationships between program units, whereas the dynamic semantics
deals with execution behavior. A static semantics of Ada is
well-defined. A dynamic semantics includes sequential execution,
parallel execution (concurrency) and 1I/0, and is much less
well-defined. The process has been to start from the LRM text,
add static semantics and then add the dynamic semantics. The
static semantics consists of denotational=-style domain equations
plus some abstract data types. The static semantics defines
whether a program is well-formed and how overloading is resolved.

The dynamic semantics is formed by adding transformation
rules to the static semantics. The dynamic semantics of purely
sequential execution (no concurrency) can be read as an ordinary
denotational semantics. The part of the dynamic semantics
dealing with concurrency is expressed in the SMoLCS (Structured
Monitored Linear Concurrent Systems) methodology. SMoLCS is
based on labelled transition systems. It defines the semantics
of processes in terms of their behavior rather than their state.

36




.

The model of a dynamic environment and storage has been done, but

o there is currently no certainty that it works in all cases,
) The FD project is currently working on formally defining a subset
of Ada to test the expressive power of the tools. This is intended
!. to evolve to a full ANSI/MIL-STD-1815A Ada specification by the end
- of the calendar year 1986. After the full FD is formulated, the next
. step is to make a correlation between the FD and the LRM. This
f: correlation will be important for making the FD readable and
A understandable. After the correlation is made, the next aim of the
project will be to create an informal explication of the FD (e.g., a
- textbook). ~
N Other aims of the project include:
ii 2., Building tools to support a machine-readable LRM
b. Creating educational courses and texts
c. Maintaining liaison with standards groups (e.g. ISO WA9,
Language Maintenance Committee, ANSI)
Eé d. Comparing the Ada FD and the ACVC (are they consistent?)
. e. Mapping the FD into a SETL program for testing
-
oY SETL might have been adopted as the language in which to express
the FD, but it needs to become more flexible.
" Ada is very strongly supported in Europe. The Commission of
the European Communities (CEC) sponsors Ada work through several
- projects, including the European Strategic Programme for Research
-} and Development of Information Technologies (ESPRIT) and the Ada
T Multi-Annual Programme (Ada MAP). Research targets for 1985-86
include the relationship of Ada to knowledge bases. One area
. which has not been strongly addressed by these projects is proof
~

y systems for verification. A project to prove some properties of
Ada/Ed was considered at one time but was abandoned as too

‘< expensive.,.
I» ;
The slides for Mr. Hansen's presentation follow this page.
- Additional material can be found in Appendix B.
;
>
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3 WEDNESDAY AFTERNOON SESSION 4
- | :
) 3.1 A Notation for Ada Proof Rules i
! - Norman Cohen, Softech
i. J.
Traditional notations for proof rules (e.g., the notations of ';
:,'.-: Hoare or Dijkstra) have certain drawbacks that complicate formal "
< verification. Norm Cohen presented a notation that is a -~
variation on Dijkstra's notation and has particular advantages
» for Ada proof rules. The slides for Mr. Cohen's presentation <
- follow this page. "
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3.2 Secure Systems Working Group
- Margie Zuk, MITRE

s
VP

PN Yt

()

2

Purpose: To study the impact of Ada on the design and
implementation of secure systems.

f].l

= ¥ o 2

Up to now, language issues have not had a big impact on
secure system design. Ada, however, has many features that
previous languages have not. As has been discussed earlier in
the conference, there are many uncertainties about the
/Y additional features and how they will affect security design.
These features fall into three categories:

£~

M ]
LK A

»

D

a. Language constructs =~ what are the security issues
connected with Ada constructs such as tasks and
exceptions?

XS
| SR

i

b. Run-time Support Library (RSL) - the Ada Run-time Support
Library is like a small operating system itself. How
should the run—-time support library for a secure system in
Ada be designed?

AP

ce Compiler Issues - how can we be sure that the
unpredictabilities in the definition of Ada do not -
undermine the security of the system? “

iy All of these questions need to be addressed before Ada can be
used with confidence in secure designs.

1 g
o

-

Although there are complications introduced by using Ada
for secure systems, there are also benefits. The Ada features
to support software engineering (e.g., packaging, separate
compilation units) make it more probable that Ada code will be
correct. Other languages have no support for software
engineering. 1In addition, the fact that Ada is a high level
language with features like strong typing makes it superior to
unstructured, untyped languages like assembly language.
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I ¥
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The security community is interested in "zero-term” -
solutions, i.e., what can we do with the technology that is .
available today? Ms. Zuk's suggestion was to restrict the use -
of Ada constructs in order to enhance the understandability and
verifiability of programs (e.g., the "conservative” compiler
approach presented by Nora Cohen). The slides for Ms. Zuk's -
presentation are follow this page. for
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As part of the secure systems talk, representatives from Softech ity

< and Verdix gave talks on specific Ada RSL's. o
L} »
> ‘
3.2.1 The Softech RSL ‘

! = Juern Jurgens, Softech
o e
- The Softech RSL runs on top of UNIX BSD 4.1 and 1its sole -
LR responsibility 1is to handle signals. 1In an architecture like the f«'.
Nebula architecture (MIL-STD-1862B Nebula Instruction Set bt

- Architecture, 03 January 1983), the Softech RSL allows some Ada .. -
".f features to be implemented directly in hardware (e.g., task switching ~::
is supported directly by the ©Nebula hardware). However, the %

< Collection pragma is not implemented in the component of the RSL that \

[ does storage management. The slides for Mr. Jurgens' presentation ::-
= follow this page. L=
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3.2.2 The Verdix RSL
- Omar Ahmed, Verdix Corp.

The security issues for an Ada RSL include both
inter~-program and inter-task security. The interaction between
two different Ada programs of different security levels running
on the same machine is an issue that is external to Ada. The
concerns are the same as they would be for two programs written
in any languages.

Interactions between two Ada tasks of different security
levels that are part of the same Ada program is much more
Ada-specific. Inter-task security may require some kind of
"level” pragma to indicate the security levels of the various
tasks within a single program. Such a pragma would direct the
compiler to check for certain kinds of interactions (i.e.,
rendezvous between a SECRET task and a TOP SECRET task or shared
memory between two tasks of different levels). These checks
could probably be done at compile time.

Supporting such pragmas would, however, effectively change
the language, since such pragmas would forbid certain
interactions that would otherwise be legal. A program might
compile successfully without the pragmas but not with them. It
is more manageable to adopt the convention that a single Ada
program runs at a single level, with all tasks within it at the
same level.

One approach to limiting interactions between Ada programs at a
single 1level 1is the Rushby separation kernel approach. In this
approach, programs of different levels are isolated from each other
in separate domains, and can only communicate through the separation
kernel. The separation kernel only allows very strictly controlled
imter-program communication., The separation kermel approach could be
regarded as a zero-term solution to inter-program security.

The Ada LRM says nothing about inter-program communication,
Inter-program communication could be added in the RSL (e.g., a
"mailbox" facility). Programs could also share memory. As
further functionality (e.g., shared memory, file systems) is added to
the RSL, more complicated security mechanisms have to be built
into the RSL, and verification becomes more complicated.

Verifying the security-relevant portion of an RSL is a near term
goal which is boundable.

The slides for Mr. Ahmed's presentation follow this page.
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4 THURSDAY MORNING SESSION

-
»

The Thursday morning session consisted of summaries by the :
Working Group Chairs of the workshop activities relevant to ‘
! their working groups, and recommendations for actions to be taken
* in the area of formal verification of Ada. ¢

ES Richard Platek announced that an attempt was being made to

create a SIGAda Committee for Formal Methods, and that 90 minutes had !
been reserved at the next SIGAda meeting in Minneapolis, Minnesota, \
w for the Working Group Chairs to report on the Workshop. The hope was
expressed that this committee would not be isolated from other SIGAda
committees.

IR AT IS I SV O R e
.

N Much of the Workshop was devoted to the issue of a formal
- semantics for Ada. The Europeans have done much more in this
_ area than has been done in the United States. Several proposals
- for work in the area of Ada semantics were put forth, including:

~ A
a. Identify and standardize a set of restrictions defining a
s "conservative” implementation of Ada that would simplify the
\ semantics. ]
~ b. Develop multiple formal definitions of Ada aimed at
o facilitating proofs.
c. Develop a standard instrumented compiler to answer
i programmers' and implementers' questions.

I1f several different formal semantics are developed, there
~ should be some way of reconciling them or demonstrating their
= consistency. Decisions like what form to present the semantics
- in and whether it should be a semantics for full Ada or only a
restricted subset should be made on the basis of attempts to
! actually create a semantics, rather than on a priori judgement
. about what is feasible.

. Some concern was expressed about whether it was appropriate
to propose standards (e.g., a standard instrumented compiler,

a standard formal definition) at this time. There was a general
consensus that there is a need for a standard formal semantics
it and a standard mechanism for reasoning about programs; it was

’ felt that these two items were not the same thing, and should be
distinguished. There was also a general consensus that pursuing
David Luckham's proposal for a standard instrumented compiler
would be useful.

.
[

m Friedrich von Henke presented the following recommendations

?: for work in Ada specification languages:

. a. Experiments with specifying programs in ANNA should be

i carried out and the experience evaluated, with the goal of

'S y
;\
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eventually arriving at a generally accepted specification
language at the code/package level,

Languages for specifying concurrency, real time behavior
and floating point arithmetic should be explored. Much
basic research is needed here.

Development of Ada-oriented requirements, design and
specification languages should be further explored. ANNA is
a language for design and code specification.
Design/specification languages for Ada should integrate
advanced concepts, and should be based on a formal semantics
of Ada.

The point was made that decisions about languages, in particular
what constitutes an "Ada-oriented"” design/specification language,
must be based on experience. It was suggested that if the
design/specification language is too divergent from the Ada
philosophy, it will be impractical to use.

Margie Zuk presented the following recommendations for work
in secure systems in Ada:

a. Delineate the features of Ada that introduce new security
concerns (i.e., concerns that are specific to Ada).

b. Investigate the "conservative” compiler approach for
security. What impact would optimization pragmas have on
assurance that a system is secure?

Determine what restrictions should be placed on the use of
Ada for secure systems design and implementation. This
would include formulating a rationale for any specific
restriction.

Study the security and verification issues related to the
Ada RSL.

Identify and track ongoing efforts in secure Ada systems
(e.g., the Army Secure Operating System (AS0S)).

John McHugh presented the following recommendations for work
in near term Ada verification systems (0-4 years):

a. Develop prototype verification systems built around
existing specification languages; experiment with the
prototypes by applying them to real problems.

Investigate the use of semi-formal methods, e.g., the IBM
Clean Room project.

Consider Ada-specific verification problems, both in the
abstract and from the point of view of existing systems
(e.g., what problems would crop up if SCOMP were redone in




v "s Ty
a

'l *y

Ada). The latter will help to produce a really
subset of Ada.

Consider constraints on RSL's and code generation to enhance

confidence in verification.
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APPENDIX A

Ada Verification Mailing Information

Since verification impacts not only coding activities but
all development activities, it is desirable that many groups
continue to be informed about the progress of these workshops.
Therefore, the account ADA-VERIFY has been created on USC-ECLB
and will be used as a central repository for Ada Verification
announcements, files, etc. The list shown below has also been
established on USC-ECLB to encourage the exchange of ideas:

Ada-VERIFICATION-LIST
Messages that are sent to this list will be received by all of
the individual electronic addresses that are included in the
Mailing Directory.

The Mailing Directory is provided as the remainder of

Appendix A. It is a directory of workshop participants and other

interested parties along with their postal, telephonic, and
electronic addresses.

NOTE: The AJPO is planning to move all ECLB accounts to ISI.
Addresses will be (name) @Ada-20 as of 22 November
1985.

* Those persons who attended the 2nd Workshop are rnoted in the
Mailing Directory with an asterisk.
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Mailing Directory

Bernard Abrams

Grumman Aerospace Corporation
Mail Station 001-31T
Bethpage, NY 11714

(516) 575-9487

Omar Ahmed

Verdix Corporation

7655 0ld Springhouse Road
McLean, VA 22102

(703) 448-1980

Eric R. Anderson

TRW DSG (R2/1134)

One Space Park

Redondo Beach, CA 90278
(213) 535-5776

Dr. Thomas C. Antognini
MITRE Corporation
Mailstop B330
Burlington Road
Bedford, MA 01730

(617) 271-7294

Charles Applebaum

1058 Boyurgogne

Bowling Green, OH 43402
(419) 352-0777

Krzystof Apt

Thomas J. Watson Research Center
P. O. Box 218

88-K01 Route 134

Yorktown Heights, NY 10598

(914) 945-2923

Terry Arnold
Merdan Group

P.O. Box 17098

San Diego, CA 92117

Ted Baker

Department of Computer Science
Florida State University
Tallahassee, FL 32306

(904) 644-2296

ABRAMS@USC-ECLB

TRWRB! TRWSPP! ERA@BERKELEY

SECURITY ! TCA@MITRE-BEDFORD or
TCVB@MITRE-BEDFORD

CHA@MITRE-BEDFORD

MERDAN@ISTI
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David Elliot Bell DBELL@MIT-MULTICS
Trusted Information Systems, Inc.

3060 Washington Road

Glenwood, MD 21738

(301) 854-5889

Dan Berry

3531G Boelter Hall

Computer Science Department
School of Eng. and Appl. Science
Los Angeles, CA 90024

(213) 825-2971

Edward K. Blum BLUM@ECLB
Mathematics Department

University of Southern California

Los Angelos, CA 90089

(213) 743-2504

Alton L. Brintzenhoff SCI-ADA@USC-ISI
SYSCON Corporation

3990 Sherman Svreet

San Diego, CA 92110

(619) 296-0085

Dr. Dianne Britton HELBIG@ISI
RCA Adv. Tech. Labs

ATL Building

Moorestown Corporate Center

Moorestown, NJ 08057

(609) 866-6654 or (609) 924-3253

Dr. R. Leonard Brown BROWN@AEROSPACE
M1/112

The Aerospace Corporation

P. O. Box 92957

Los Angeles, CA 90009

(213) 615-4335

Richard Chan RCHAN@USC-ECL (bad)
Hughes Aircraft Co.

P. 0. Box 33

FU-618/P115

Fullerton, CA 92634

(714) 732-7659

Norman Cohen NCOHEN@ECLB
SofTech, Inc.

705 Masons Mill Business Park

1800 Byberry Road

Huntingdon Valley, PA 19006

(215) 947-8880




* Paul M. Cohen PCOHEN@ECLB §
Ada Joint Program Office

! OUSDRE/R®AT

Pentagon Room 3D139 (Fern Street)

Washington, DC 20301-3081 o

(202) 694-0211
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' Richard M. Cohen COHEN@UTEXAS-20
P Institute for Computing Science

2100 Main Bldg.

University of Texas

Austin, Texas 78712

(512) 471-1901
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Michael D. Colgate FREEMAN@FORD-COS1
Ford Aerospace & Comm. Corp.

- 10440 State Highway 83

. Colorado Springs, Colorado 80908

2, * Mark R. Cornwell CORNWELL@NRL-CSS .
! Code 7590 Lo
Naval Research Lab L
Washington, D.C. 20375 .

(202) 767-3365

LR | i

Major Terry Courtwright COURT@MITRE

WIS/JPMO/ADT -
7726 0ld Springhouse Road |
Washington, DC 20330-6600 .
(202) 285-5056
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‘ Dan Craigen CMP.CRAIGEN@UTEXAS-20
. ¢/0 I. P. Sharp Associates
265 Carling Avenue
. Suite 600
Ottawa, Ontario, Canada K1S 2E1l
(613) 236-9942 -
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Steve Crocker, M1-101 CROCKER@AEROSPACE
. The Aerospace Corporation
- P.O. Box 92957
. Los Angeles, CA 92957
S (213) 648-6991

' John J. Daly WCOXTON@USADHQ2
USAISSAA

. 2461 Eisenhower Avenue

: Alexandria, VA 22331-0700
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Tom Dee

Boeing Commercial Airplane Co.
P. O. Box 3707 $§
MS 77-21

Seattle, WA 98124
(206) 237-0194
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Jeff Facemire FACEMIRE®TI-EG@CSNET-RELAY
Texas Instruments ‘
P.0O. Box 801

M/S 8007

2501 West University

McKinney, TX 75069

(214) 952-213%
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* John C. Faust FAUST@RADC-MULTICS
RADC/COTC _ o
o Griffiss AFB, NY 13441 o
o (315) 330-3241 5

e Gerry Fisher vl
& IBM Research 35-162 =
P. O. Box 218 S
Yorktown Heights, NY 10598

(914) 945-1677
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Roy S. Freedman FREEDMAN@ECLB
Hazeltine Corporation

Greenlawn, NY 11740

(€16) 261-7000

-‘: -,'

James W. Freeman

Ford Aerospace & Comm. Corp.
Mailstop 15A

10440 State Highway 83
Colorado Springs, CO 80908
(303) 594-1536
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Mark Gerhardt MSG@MITRE-BEDFORD

MITRE Corporation

Burlington Road 4

o Bedford., MA 01730 i
(617) 271-7839 R
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Chuck Gerson

Boeing Aerospace Co.
.- Mailstop 8H-56 e
] P.O. Box 3999 RS
s Seattle, WA 98124
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Helen Gill

MITRE

Mailstop W459

1820 Dolly Madison Boulevard
McLean, Virginia 22102

(703) 883-7980

Kathleen A. Gilroy

Software Prod. Solutions, Inc.
P. O. Box 361697

Melbourne, FL 329386

Virgil Gligor

Departmeant of Electrical Engineering
University of Maryland

College Park, Maryland 20742

(301) 454-8846

Donald I. Good

2100 Main Building

The University of Texas at Austin
Austin, TX 78712

(512) 471-1901

Ronald A. Gove

Booz, Allen & Hamilton
4330 East West Highway
Bethesda, MD 20814
(301) 951-4624

Inara Gravitis

SAIC

1710 Goodridge Drive
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APPENDIX B

Documentation from the European Efforts

The papers found in this Appendix were provided by the
Dansk Datamatik Center (DDC). Since Kurt Hansen of DDC was
unable to bring sufficient copies for all attendees, the Dansk
Datamatik Center has allowed IDA to reproduce and include these
documents as part of the Proceedings.
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2. Project Summary

The project aims at developing the draft Ada language formal
definition, the Ada FD.

The task will be completed using state-of-the-art techniques
in formal specification methods. Different specification ap-
proaches will be carefully studied, and the most promising
methods will be chosen.

The project is foreseen to progress as follows:

- A "difficult" subset of Ada will be selected,

- a set of combinable specification techniques adeguate
for the definition of full Ada will be tentatively
selected, and

-~ a trial definition will be developed.

- The trial definition will be evaluated, and on this
basis

- a full scale draft Ada formal definition (the Ada FD)
will be developed.

- In parallel, annotations of the Ada FD will be devel-
oped.

- Extensive cross referencing to the Ada standard docu-
ment (ANSI/MIL-STD 1815A) will be developed.

- The work on the Ada FD, it's annotation, and correlation
to existing reference manuals will be reviewed on a
regular basis.

- Tools for manipulating the Ada FD will be developed.

- mappings from the proposed Ada FD to the NYU SETL
interpreter for Ada, will be documented, as will

- a study of the feasibility of automated verification
of the ACVC test suite with respect to the Ada FD.

- Finally Educational Issues will be addressed.
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It must be emphasized that the completed Ada FD will define 3

! the Ada language as found in ANSI/MIL-STD 1815A (Revision

by January 1983). Whereever this latter might be inconsistent,
incomplete or ambiguous, the produced Ada FD will leave the &'.‘_'
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3. Objectives

The main objectives of this project are:

- To obtain as concise a definition of the full ANSI Ada
language as is today feasible, in a form which

(0) may serve as a reference for questions on Ada,

and is suitable for further research on the following
topics:

(1) formal work in the areas of proof systems for Ada
programs,

(2) correct development of correct Ada interpreters and
: compilers,

(3) the meaningful generation and verification of Ada
test programs, incl. validation of the ACVC test
suite, and

(4) the derivation of informal, but precise, unambiguous
Ada reference manuals for various user groups,

in order to help provide:

(5) input to the ongoing standardization work on Ada, in
particular to support the ISO future review of the
Ada standard, and

(6) a worthy, broad, and commonly accepted candidate for
the formal definition component of a future Ada ISO
Standard.

- And to further the propagation of Ada, as well as teach-
ing professionals how to read, understand and use an Ada
FD in their present position.

Subsidiary objectives are:

- To help unite various approaches to the informal, and
semi-formal descriptions of Ada (by studying, how to
relate the proposed Ada FD to e.g. the NYU SETL inter-
preter for Ada)

- To further develop and research engineering methods
suitable for the precise definition of large, complex
software systems (by calling on a wide community of
computer scientists to take part both in the actual Ada
FD development, and its review), and thereby

- To further propagate the use of formal methods in soft-
ware engineering.

! |

3
T

"

M a s &

— . el




* \ﬁ’_-.

.t Aaa
N Aims and Objectives with Respect to the
{2 Multiannual Programme

;"‘.’ ~ )

A NA

»

4. Aims and Objectives with Respect to the Multiannual
! Programme

The following is quoted from TF-TIT/2472/84-EN rev. 3, start
Pg.36:
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“3. Formal Definition of Ada

B

. 3.1. Background

Work on a Formal Definition (FD) of Ada is of prime im-
portance for the rigour and stability of the Ada Standard.
= Eventually, a completely formal description could be the
X prime form of any programming language standard, with a 3
o narrative definition and validation test suite as comple-
ments. However, even though the main mathematical forma- -
. lisms to cover the important aspects are probably avai - T
o lable, combining them effectively and applying them to Ay
G the concrete case of a language as comprehensive as Ada 4
is a matter which still needs development. Part of this -
work will be for tools that help to make the description Ny
- more tractable, and hence more usable for a number of
D purposes: not only as a candidate for the ultimate lan- R
guage standard, but also as a basis for derivation of 4
e correct compilers, and for reasoning about properties of =
. Ada programs. Another aspect is that of making the de- -
scription executable, so that it would be used to process
the Ada validation test suite, and Ada programs in general.

T 7

Work on a FD of Ada cannot proceed in isoclation: it needs
to recognize first of all the existiang standardization

! effort and their revision cycle. The work of ISO TC97/

o 8C5/WG 14 "Ada" has just begun (first meeting 10-11 April
1984). At the first meeting it was confirmed that the

- basis for the initial ISO standard shall be the Ada Refe-

o rence Manual, and that a formal description is not consi-
dered at the stage. In fact a separate working group ISO
TC97/SC5/WG 16 "Guidelines for the development of standards
within SC5" may at some stage address the usage of a for-
mal description for standardization of programming langua-

) ges. Thus any FD project should at least establish liaison

e with WG 14 and WG 16. Other standards liaison, e.g. with
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- ANSI and ECMA, may also be useful.
5 There is a possibility that the US will fund some work
t? on the same subject. In that case a collaboration could

be envisaged, most likely in the form of independently
- funded, but complementary projects, which have a large
ii measure of mutual cognizance.
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3.2 Guidelines for the Formal Definition Project(s)

The following guidelines will apply to any project pro- 2
posal under this heading. They are for a large part based

on the advice given by the Ada-Europe working group on T
Formal Semantics of Ada, which has held intensive discus- L
sions on this subject over the past one and a half years." -

The above quoted section is in close harmony with what the ?: :
proposers of this project believe. o
In order to show that the project complies with the aims and ol
- objectives of the multiannual programme, we have numbered and L
quoted the EEC requirements below -- together with our plans
on how to fulfill them.
N l. “All proposals shall contain details explaining on what
. basis and to what extent the approach(es) put forward can e
be considered "formal"." )
-
S Definitions can be expressed in various styles:
- Systematic: The gross outlines of a 'formal' specifi-
cation method is followed ~-- using some
" informally explained specification langu- .-
. age(s), n
- Rigorous: and certain, or all relevant, but not
necessarily all aspects of, properties o
3 of this language and of the constructed NG
. specification are ‘formally' expressed,
m
- Formal: and ‘'formally' verified or defined. -
In the previous three paragraphs the word ‘'formal' has been
used in the sense it is used in mathematical logic.
i It is here tentatively being proposed to split the Ada FD
into basically three parts: "
. - Static Semantics: dealing with all the statically - "
decidable properties that any Ada program must sa- -
tisfy, and which a compiler is specified to check. N
> -
- Dynamic Sequential Semantics: dealing with the run-
g time, action, or execution semantics of all but the K¢
X tasking aspects of Ada. D
X - Dynamic Parallel Semantics: dealing almost exclusively - .
with the time-dependent, and tasking aspects of Ada. i'
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This split has been chosen for pragmatic reasons, and is -
. motivated below. n
B AT
It is further being tentatively proposed to define: S}
o Y
;3 - Jdeterministic aspects of Ada denotationally, :;
- - non-deterministic, but not concurrent, aspects of Ada "
g axiomatically/algebraically, and by
v ‘*n'
) - concurrent aspects of Ada, i.e. Ada tasking, struc- 5;
'3 tural operationally. e
e, . AN
In addition we may find it desirable to express certain
o absolute, or relative, partially ordered, time-dependent Y
o features of Ada using temporal, or interval logic. ol
" [ARS
. For the denotational semantics we propose to choose, as our }ﬁ
W departure point for a fully, formally definable specification N
language, that of VDMs META-1V, but with additions and re-
strictions, henceforth referred to as ML4. e
= In the static semantics a simple, applicative subset of ML4 'fi
will be proposed, and the definition will be a standard, o
. denotational semantics (non-exit, non-continuation style) o
ll model. Thus the static semantics model will be fully formal.
’ Y
) For the greater parts of the dynamic sequential semantics an pg
Q{ imperative version of ML4, using the so-called exit mechanism, gt'
™5 will be proposed, and the definition will be a denotational oA
model which can be fully, denotationally, i.e. formally Ch
explained. We propose to "decorate" the applicative ML4 with
gs imperative-looking combinators like statements, sequencing, .
and exit constructs, in order to render the definition more oY
. readable. It should be noted that the “imperative" combinators R
) are but a well-disciplined precursor to the "abstract semantic if'
e algebras" of e.g. Peter Mosses. In this sense our dynamic ot
semantics definition of Ada is fully formal.
E: The storage model of Ada: values, locations (pointers), al- jf'
location, assignment, and contents-taking, will be proposed <.
x expressed in a style reminiscent of the CLEAR or ASL algebraic R
o) semantics specification language. Other, minor parts of s%;
- “sequential" Ada may likewise be, and in cases, alternatively,
. rather than only exclusively, algebraically defined. To the o
(e extent, these metalanguages are formal and combineable this o
[ definition will be formal. A
. :’\)
. The definition of Ada tasking is here being proposed to be 'Qi
defined using the SMoLCS derivative of structural operational '
semantics. ey
"f\ :
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Since SMoOLCS can be expressed in an algebraic style, using
ASL, it turns out that the definition of Ada tasking can be
made technically similar to the algebraic style mentioned
above.

It will finally be attempted to give the combination of the
4-5 specification parts a formal explanation. This may be
done either "absolutely" (ideally): with respect to the
underlying specification languages, or “relatively": with
respect to the actual, resulting Ada FD. To the extent that
this can be expressed formally, the whole Ada FD is formal.
To the extent it cannot be properly formalized, the Ada FD is
only rigorous. We believe that it is feasible to express the
“relative" meaning of combining the specification parts.

2. “"Review procedures shall be incorporated in that workplan
as an integral part of the effort, in order to promote
acceptance of the results; the problem of liaison to the
User Community shall be addressed."

A document: "The Rdle of the Ada FD" will be proposed. It
will define the uses and user groups of the Ada FD. On the
basis of such an approved document a suitably large list of
representative users from each of the groups, and from Europe
and the US, will be established. The user groups will review
the ongoing work in two forms: write-in reviews in response
to broadcast mailed reports, and meeting reviews where the
Ada FD project partners present their ongoing work. An Ada FD
review board, set up independently by the CEC, will negotiate
with the presently proposed project partners on any discre-
pancies there might arise. None, of the above mentioned re-
views are funded by this project, except for contractors
part. It is also pointed out, that the review is essential,
but it is the responsibility of the contractors, to formulate
their further actions in view of the review outcome.

3. "The FD shall base itself on the results of existing work
as far as possible; this includes the incomplete (out-of-
date) descriptions by INRIA (F), and DDC (DK): the work
at NYU -- SETL (US); as well as the Karlsruhe attribute
grammar (D)."

The work will start from scratch, but based on the current
state of the art, both in formal methods and in Ada formal
definition work.

The main contractor of the project has completed a rigorous
definition of Ada using the VDM approach, and intends to
build, not only on that work, but on some of the people who
dig it.

It is also included to study rigorous analyses and mappings
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from the Ada FD to the NYU SETL interpreter for Ada.

Since the INRIA work is basically using the same denotational o
approach as will the presently proposed Ada FD, one can say &
" that it will also incorporate the INRIA work. But since this
%\ latter reflects a rather early attempt which did not define
- anyway near the full Ada (minus tasking and storage), and at o

a stage where Ada was rather different from what it is now, =
!} one may claim that we are not proposing any explicit mapping o)
'\ from the proposed Ada FD to the INRIA work.

£
r.

4. "The FD shall be developed using reasonably few and con- ;Q
cise methods, which shall be uniformly applied to the s
whole language. The theoretical foundations for the

) combination of several methods shall be given, and proof by

) and verification theories for the FD shall be developed."

..'J

We refer to the remarks made in connection with point 1 above. A

W One may claim that the proposed number of different specifi- o3
B} cation methods does not satisfy the "few" criterion. It may -
certainly be possible, but, it is felt, not entirely desirable, N
to cut down on the number of different methods. First we could, W
e.g. give constructive, denotational models for storage and ‘
the other nondeterministic features of Ada -- and that should )
_ indeed be considered. Secondly one could, both theoretically, \
ii and practically, express all of Ada in one style, using either
of e.g. de Bakkers, Tochers, or Plotkins specification me- "

thods. This world solve the “combination" problem, but not the -
accessability (readability, and conciseness) problem. We there- e
8 fore maintain the presently proposed approach. -

-

P
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S. “The FD shall not be unduly constrained by the necessity

- to describe certain concepts like representation clauses,
- implementation defined attributes, and some pragmas. v
However, all possible effort shall be made to integrate

-L these concepts.” K

An attempt to express some of these aspects will be made, and
A it is here suggested to do so axiomatically -- and orthogonal-
. ly to the remaining, complete and consistent Ada FD.

6. "The FD document shall be coordinated/integrated with the .

fa existing Reference Manual."” el
This is a very important point, and is described more de- b

3 tailed in the description of work package R, pg. I-35. f
O., -
S b
' 7. “The FD shall be the source of derived documents for A
a &

.
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3 “
b a variety of user interests and needs; for example, _ e
the FD shall be suitable for the verification of proof
rules for Ada programs. ]
ot
: Work packages P and R, pp. 33 & 35 outline our proposal in
e this area. We tentatively define three groups of users of o
) such documents: AN
'\ »2
\ - Ada text book and reference manual writers, and Ada -
# language educators and teachers -- and, through them, i
N ordinary Ada programmers, o
2 - Ada programmers interested in proving their Ada programs o~
- correct, and 3
- Ada compiler and interpreter implementors. -
7 g
o For the first group derived documents should describe Ada in T
s natural language terms, in a tersely, and Ada FD related
’ manner. See work package P, pg 1-33, for more details. “
[
- For the second group the derived documents should consist of
- informally annotated, formal proof rules, and preferably .
N guide lines on their use. 2
ta
: For the latter group a derived document could outline the .
methods that can be used to derive correct interpreters and i
A compilers from the Ada FD. Since the literature, by now, is =
2 fairly full of such information this will not be proposed
- done in this project. o
- 8. "The FD shall be suitable for the validation of the ACVC =
/ test suite. An effort shall be made to provide means for A
. mechanically testing the ACVC against the FD (e.g. by e
: having an executable FD, or making an executable version
N automatically derived from the FD by a tool)." 5;
~ -
> In this project alternative approaches will be studied:
- indirect executability, as above, via studies of N
X mappings to the NYU SETL interpreter. Work packages o
~ Q pg 34, will study this aspect. ,
X - proof of the ACVC program incorrectness/correctness 2
Work package S, pg I-36, will study this aspect.
~ A
; .

e
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o
i 9. “The development of the FD requires support tools to N
: manipulate the FD document and to coordinate it with the %

. Reference Manual." =
iy

g This task is taken care of by work packages N and O, pp kY
~n 1-31-320 .\:L
."- :f
- 10. "All tools will be developed as (M)APSE tools." 4

m Yes. .
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5. Current State of the Art -

-
3

It is widely recognized that software engineering, unlike the

more established engineering disciplines, is still largely at oy
o the craft stage in that the techniques in common use lack an <
W underlying scientific basis. In particular, the early stages ~

of the system life cycle (regquirements analysis, specification
and high-level design) are rarely treated in a disciplined .
way by the software engineer. Yet, these stages are worthy of e
particular attention since faults generated here have been g
shown to be the most difficult to detect and the most costly o
to repair. The growing awareness of these problems has led to ?i
S the development of formal specification and systematic deve- "

lopment methods based upon recent advances in mathematics and
computer science.

X ;rl‘
L

-~

¢ v

In recent years there has been intensive research and deve-

. lopment of a variety of approaches to formal specification -
e and systematic program development in a number of centres,
K principally in Europe and North America. A large number of
real and laboratory applications have by now been carried out e
-~ and, at least for non-concurrent aspects of systems, a consen-~ .
- sus seems to be emerging regarding the desirable characteri- ]
stics of such approaches. Experimental toolsets to support

these approaches have also been developed and used on real o

. projects.

. An ESPRIT preparatory study has been carried out in this area _
Rt by the Dansk Datamatik Center (DDC) and Standard Telecommuni- T

! cations Laboratories Ltd (STL). The report of this study is -
in two parts. The first part is a broad survey of the state el
of the art in formal development theories, methods and tools,
- comparing the situation in Europe, the U.S.A. and Japan. The w1
' second part is an in depth evaluation of one particularly “ﬁ
i well-established method, VDM. This study provides probably >
s the most extensive and up-to-date view of the field addressed >4
< in this proposal, but other useful surveys of development '

methods in general (not just formal methods) are available,

L for example, the DOl Study of Ada-based System Development -
Y Methodology the ‘Methodman’ document for Ada and the survey
of Software Tools for Application to Large Real-time Systems
-~ (the 'STARTS' guide). N

In the past, the principal approaches to formal methods have
been characterised as "model-oriented" or "property-oriented".
N In the model-oriented approach, specifications and designs fe
A are explicit models of systems constructed from well-defined e

primitives. In the property-oriented approach, specifications X
W are given in terms of axioms defining only the relationships Wi
ii of operations to each other (as in, for example, the so-called
“algebraic" approach).
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Important centres of research and application in the model-
oriented school include the Dansk Datamatik Center, the ~

University of Manchester and Standard Telecommunicaticn e
Laboratories (for VDM), SRI International (for HDM), USC
Institute of Information Sciences (the GIST project), the
University of Oxford (for 2Z) and Higher Order Software Inc. .
(for the HOS method). LK

-

A

Important centres for the property-based approach include R
the University of Edinburgh (Clear), SRI International (OBJ, -
CLEAR), MIT and Xerox PARC (Larch), the Universities of Pisa

and Genoa, the Technical University of Munich (CIP), USC L
Institute of Information Sciences (for Affirm), the Technical b
University of Berlin, and the University of Passau. b

It is notable that the two schools now recognise attractive
benefits in each other's approaches and systems which attempt
to provide the benefits of both are increasingly being pro-
posed. Such ideas are evident at, for example, MIT, Oxford, e
Manchester, DDC, Xerox PARC, STL and SRI. i’ '

In the area of concurrency there is much less agreement on

the "right" approach and a large number of contrasting theo- Sj :
ries are being researched. These include algebraic approaches o
(e.g. CSP from Oxford and CCS from Edinburgh University), net o
theory (GMD Bonn), temporal and modal logics (Manchester 2.2

University, SRI, Stanford, etc.,) and label-event and SMoLCS -
systems (Pisa and Genoa). In September 1983, a workshop ;
organised jointly by the U.K. Science and Engineering Research K

Council and Standard Telecommunication Laboratories, STL, was 'f
held in Cambridge (U.K.) at which many of the leading research- ey
ers in the field were present and the principal approaches
compared. The forthcoming published proceedings will provide n "
valuable input for this proposed project. =

A number of attempts have been made to support some concur- o
rency features alongside established methods for sequential
systems -~ for example CSP with VDM (at DDC), temporal logic
with HDM (at SRI), the rely/guarantee condition extensions to
VDM (at Manchester) and predicate-transition nets (at GMD).

An ESPRIT pilot project (the GRASPIN project) is attempting I
to utilise Petri nets and axiomatic abstract data types in a v
coherent framework. However, in general, combining various - .
approaches based on differing semantic theories raises fun- .: .

damentally difficult problems; the issues involved in this

were explored in a NATO-sponsored workshop organised by the
Dansk Datamatik Center in May 1984. It was attended my many
of the leading experts on semantics. The proceedings of this
workshop will clearly provide valuable input to the proposed )
project. a

,"'l.‘ y
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A number of formal approaches have been supported by experi-
mental toolsets, some of which have been utilised in real-
world projects. Notable efforts have been developed at
USC-1S1 (Affirm), the University of Texas (Gypsy) and HOS
Inc.(Use-it). Database systems for specifications have been
explored at Xerox PARC (PIE). Notable work in theorem proving
has been carried out at SRI (Boyer-Moore), the University of
Nancy (Reve) and the University of Edinburgh (LCF), among
other centres. Significant programming environment efforts
have been carried out at INRIA (Mentor), CMU (Gandalf) and in
Japan (Iota).

It must be noted, however, that most of these toolsets are
experimental vehicles and could not be utilised directly in
industrial situations. (Exceptions are Use-it, marketed com-
mercially by HOS, and possibly Gypsy.) Considerable work is
required to develop tools capable of handling large-scale
industrial applications. It will clearly be necessary to
develop full scale database-oriented programming environments
based around formal methods. This highlights a gulf between
researchers and practitioners which must be bridged for any
method: the promising ideas emerging from research must be
proven in industrialscale case studies and packaged for
transfer and use in an industrial context. Relatively few
‘methods' have yet reached this stage of maturity which would
be characterised by the availability of significant published
case studies, textbooks and industrially oriented training
courses. (VDM is one of the most mature according to these
criteria.)

In terms of applications, the more established approaches
have been used on a significant number of real-world projects.
There appear to have been more of these in the U.S.A. HDM,
for example, has been used to specify and prove security on a
number of operating system kernels (KSOS, PSOS and SIFT).

HOS has been used on a number of embedded military systems.
Affirm has been used to specify and prove a security kernel,
various communication protocols and a military message switch.
Gypsy has similarly been used for message switching and for
part of an aircraft control system.

In Europe, the most widely used formal method in industrial
situations is probably VDM. VDM has been applied to a va-
riety of projects in a number of countries: Austria, Denmark,
the Federal Republic of Germany, the United Kingdom and Italy.
Applications include the development of compilers, database
systems, aspects of operating systems, and office automation
systems.

These formal systems have been tfied out in various app-

lications, among these is Ada. These studies contain
attribute grammar definitions of Ada (Karlsruhe), incon-

B-22
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- plete Ada (INRIA), DIANA-syntax, SETL executeable de- )
N scription (NYU), and the somewhat outdated DDC Ada FD. —

The latter is the basis from which the DDC validated Ada ]
N compiler is derived. ot

: The summary above of formal methods and Ada definition -
N will form a very strong base for a development of an Ada &
-, FD. Furthermore, current research will be incorporated

into the project - specially the ESPRIT funded RAISE (Ri-
' gorous Approach to Industrial Software Engineering) seems
N to be able to contribute considerably.
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6. Project Description

o 6.1 Overview

This section provides an overview of the contents of this
proposal, and includes an overview of the deliverables.

T rod
LA

* vy v ¥ v v s

The proposed Ada FD project may be seen to consist of five

’ major categories of work:
) - Selection of appropriate, “difficult” example subset of
i Ada (xAda), selection of appropriate formalisms to be
o used in a FD of xAda, and the trial FD of xAda -- all this
intended for review and approval of general approach. 3

X = The actual draft FD of ANSI/MIL-STD 1815A Ada. g

-~ The derivation of a natural language description of Ada :
o from the FD, and their correlation to the existing ANSI A
W% Ada Reference Manual(s):; this category also includes li-

ason with appropriate standards organisations: ANSI, ISO, .
ECMA, etc. as well as preparation of educational type of
documentation. s

- Development of new, and adapting existing tools for the
i - manipulation of the Ada FD; and feasibility study of ACVC
' test suite validation from the Ada FD.

- Review of Ada FD and informal, natural language descrip-
tions and correlations ~- to be held at regular intervals
throughout the project.

Pt
'I
.
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The main deliverables will be:

A draft Formal Definition (FD) of ANSI/MIL-STD 1815A Ada

Py
[

b to the extent, that the standard is unambiguous and com- ,
- pPlete. Exhaustive annotations, and correlations to exist- N
_ ing informal reference manuals will be made. !

(S o

R - Evaluation reports arising from regular reviews. y

~, - Report stating the results of the study of ACVC validation ﬁ

> feasibility. :
) - Tools, written in Ada, and supported by an APSE, for hand- N

e ling the Ada FD, and prepared for the introduction of .

o possible proof systems and ACVC validation. A

*d

o™ uy
6.2 Work Packages and their Interrelation

- This section contains a detailed description of the project 3

' ﬁ: in terms of relevant work packages. -

3~24
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o Work Package
5‘ i
f Identification: A r
: Name: Start up -
. Purpose: Project initialization and liaison t
3
Contents: "
3 - -
R -~ 8Set up of tools, equipment, files etc. necessary for
X project management
’ - Establishment of contacts to other groups working =
. in the area (ANSI, ISO, ECMA, ...).
-\ - Construction of mailing lists and opening letters to
b potential reviewers and users of an Ada FD. 7
Requisites: pre: None
>~ post: WPs C-D "
o~ -
N Man Months: 1 -
N -_—
. Deliverables: Report 1l: Project procedures &
Report 2: Review Procedures
k- Report 3: Review Groups (Mailing Lists)
¢ o
K (|]) Review: Reports 2-3 f-
e E
? St
= -~
R =
K. (|) The reviews mentioned in this and the following work pack- ii
ages are external reviews, and is done via work packac V,
y pg I-39.
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Work Package

Identification: B

Name: The RSle of the FD (Formal Definition)
Purpose: Defines the requirements to be fulfilled by

a FD of Ada -- identifies the various uses
such a FD may have.

Contents:

This deliverable defines the various user groups of an

Ada FD (incl. possible Proofs Systems for the Ada FD), and
the uses these groups may have of such a FD. Roughly speak-
ing the groups include (1) Ada programming language refe-
rence manual writers (and, through them, Ada programmers),
(2) Teachers of Ada programming, (3) Ada interpreter and
compiler developers, (4) APSE developers, (5) Computer
scientists interested in studying Ada related matters

(such as e.g. proof systems, formal validation, formal spe-
cification, etc.), and (6) International and national Ada
language standardization organisation members.

Reguisites: pre: None

post: WP E~-X

Man Months: 1l

Deliverables: Report 4: The ROle of the FD of Ada

Review: Report 4
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5 Work Package N
.

N Identification: C =
:;f Name: Tentative Specification Language

‘_ Purpose: Select a tentative specification language for E'.;T
1 a "difficult", example subset Ada (WP D), the .

specification of which (WP E), can serve as a
) basis for reviews and subsequent approvals. 5'3
3 Contents: '
: This WP will tentatively select the specification techni- ;:.
= ques to be used for the full FD of Ada. It is to be ex- =
pected that these mighfy include:

:f-' - Denotational semantics techniques for the specification <
- of the (sequential) deterministic aspects of Ada,
. - Algebraic semantics techniques for the specification of ﬁ’
- the non-deterministic (non-concurrent) aspects of Ada,

‘_I - Structural operational semantics (labelled event system)

ey techniques for the specification of concurrent aspects

a of Ada, following the ASL-SMoOLCS approach also this part

2 can be expressed in an algebraic style, and possibly i
- - Temporal (or interval) logic techniques for the speci-
L fication of temporal (time) aspects of Ada.
“ rl-
j{.': The chosen techniques will represent the main streams of -

established, international research in the area of speci-

" fication techniques. !
A Requisites: pre: WP A

. post: WP E s
- Man Months: 5

. Deliverables: Report 5: Informal Description of Trial Speci- :\
- fication Languages.
- Review: By WP F: Report 5 ¥
™
W ':.‘
_ o
3

",
e’




“'-“;,, Project Description o
"h. ‘.'
l".‘ ..-F
Work Package o
! Identification: D -
~ o
~
= Name: Example Ada subset selection G
[ h
ﬁ; Purpose: This "difficult" Ada subset shall serve as ﬂf
the basis for a trial FD, see WP E. b
N Contents: o~
» A representative, but specification-wise "difficult" sub- :f
= set of Ada is to be selected -- a subset illustrating all N
X relevant aspects of Ada, ie such which examplifies deter- =

ministic, as well as non-deterministic; sequential, as

' well as tasking; time-independent, as well as time-depen- th
e dent; static as well as dynamic semantics:; syntactic, se- Ny
mantic, and pragmatic aspects of Ada, and thereby also o

- the complexity of Ada. ii
' 'y
Requisites: pre: WP A "

_ post: WP E-X : )
¢ 7
o Man Months: 4 TN
.::f

Deliverables: Report 6: Example "Difficult" Subset Ada

g
o
|

Review: By WP F: Report 6 :y
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The
Oraft

Defnition Project Description
of Ada

Work Package

Identification: E

'ﬁ Name : FD of a "“Difficult" example Ada subset.

N

ﬁ; Purpose: To show the feasibility, and appropriateness
o of the chosen formal specification method.

Contents: .

. A definition of the "difficult" example Ada subset, toge-
< ther with exerpts of an informal, natural language anno- .
~ tation of same, and its correlation to the ANSI informal e
reference manual.

The actual work will be done iteratively. 3 persons will o
- work simultaneously on up to three aspects of the Ada -
s language (deterministic, non-deterministic, and tasking).
g These three persons will submit early attempts, sketches,

drafts, for international review in order to guarantee i
approval.
:% Requisites: pre: WPs B-C-D f-
3 post: WPs F-N .
\l
Man Months: 12

H A

Deliverables: Report 7: Formal Definition of "Difficult",
- Example Ada Subset

a s

A

Review: See WP F




o '-,-“:” ,
i “ Forma Project Description

bl
"a
2 Work Package
b
\ . . Identification: F
Name: Initial Review and Approval
.\ Purpose: To set the stage for the full, FD of Ada, by ;
~ assuring that the chosen method is acceptable. 3
g Contents: ]
International advisory groups review the FD of the "dif- -
™ ficult", example Ada subset (see also workpackage V) 2
RS its derived natural language explication, and its correla- :
tion to the ANSI informal description.
r This work package (F) is separate from work package V, pg g
I-39, the general, ongoing review of ongoing Ada FD acti- p
vities.
h“
& Funding of this activity is not included in this project,

except for the contractor part.

Requisites: pre: WPs B-C-E 3
: post: WP G .
i Man Months: 1 . y

Deliverables: Report 8: Review of WPs B-C-E, conclusions and
propose further actions.

a r_ .
s 4
S

%

TR T AL R S

! Review: No

S

o

B :
03 :
l‘—'.

T

A -
?.Q‘ L
v :




The

Draft .\i-
Danition 1-25
¥ j of Ada
B Project Description -
A >
A9 .

Work Pack&ge

123 Identification: G

R Name: Final Specification Language &
Ry |
Purpose: Serves as basis (input) for WPs H-I-J-K-L -

. (Ada FD) and WPs N-O (Ada FD Tools). ~

N

Y Contents:
1:' "_.
o A complete description of the full set of formal specifi- "

cation languages used in the resulting Ada FD. This work

o consists of individual work of the specific denotational, .
3? algebraic, structural operational, and other, semantic :
= specification notations, as well as on the possibility of

2 their combined semantics. -
=i We refer to remarks made in the contents section of WP C. -
3 Requisites: pre: WP F .
b post: WPs H-I-J-K-L-N-0-X
-1

;. Man Months: 7 i
= Deliverables: Report 9: Final Specification Languages and

> Methods -~ a description of the
f; individual and combined semantics L
3] of the chosen specification langu- o
] ages and methods.

Review: Report 9 !..
." .
o
R 5
:‘; ..\
N 3
N

3

f B-31 s




% ”I| o Project Description

L5
P

. Work Package

Identification: H

VI

Name: Ground rules for natural language explication
t{ Purpose: To establish rules for the informal, natural

language explication of formal definition for-
mulas, and for the correlation to existing
Ada reference manuals.

57, ‘
Al

Contents:

- ldentification of rules for deriving natural language de-
= scriptions, or explications (explanations) of the Ada FD
v formula, and for the systematic correlation of the Ada FD
to the existing Ada reference manuals. This work is con-
cerned with "style". The target, natural language will be

english.
;k Requisites: pre: WP G
(%} EOSt: WPs P-R
Man Months: 1l

‘. "'c".-r. .

Deliverables: Report 10: Guidelines on Ada FD Explication
] Report 1ll: Guidelines on ANSI/MIL-STD 1815A
i Ada FD Correlation

Review: Reports 10-11.

" B-32

............

.. AN

AR G A G G R O L R R N A I R S



- -
- - 1
abhply

S

AR
R

LIP v

A

s

ALl N RO

The
Drart

Formal I-27
Definittion 2
of Ada

Project Description

Work Package

Identification: 1

Name: Formal Definition of Ada Static Semantics
Purpose: To establish a concise, formal definition

of all the statically decidable properties
of any Ada program.

Contents:
Two issues will be addressed:

- The design of an abstract syntax and a correlated
concrete syntax for the Ada language.

- The formal definition of the static semantics of Ada
using the formalism chosen in WP G, with respect to
the ANSI/MIL - STD 1815A Ada standard.

The work will be carried out in two phases of approximate-
ly equal lengths. The first phase results in a draft propo-
sal subject to an intermediate review. The second phase
ends with a review approved FD of Ada static semantics.

Requisites: pre: WPs G-R
post: WPs L-0-P-Q-R-S5-X
Man Months: 12

Deliverables: Report 12: The Concrete and Abstract Syntax
of Static Ada, and their Mutual
. Translations
Report 13: The Formal Definition of Ada Sta-
tic Semantics.

These deliverables will be issued in two ver-
sions:

Reports %12-%13: half-way, incomplete draft
Reports 12-13: final draft

Review: Reports %12, %13, 12, 13
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Project Description

Work Package

Identification: J

Name: Formal Definition of Ada Dynamic Sequential
Semantics
Purpose: To establish a concise, formal definition of
the dynamic semantics of sequential and non-
deterministic (but not tasking) aspects of
the Ada language.
- Contents:

Three issues will be addressed:

Design of an abstract syntax suitable for expressing
the dynamic semantics of Ada -- possibly correlated
to the DIANA intermediate language.

A correlator to (translator from) the static semantics
abstract syntax language.

A formal definition of the non-tasking aspects of the
Ada language. This part may involve use of up to two
specification languages, a denotational for the deter-
ministic sequential aspects of Ada, and an algebraic for

the nondeterministic, exclusive of tasking, aspects of
Ada.

The work will be carried out in two phases of approximate-
ly equal lengths. The first phase results in a draft propo-
sal subject to an intermediate review. The last phase ends
with a review-approved FD of Ada dynamic sequential and
non-deterministc semantics.

Requisites: pre: WP G

post: WPs H-L-0O-P-Q-R-X

Man Months: 8

Deliverables: Report 14: Abstract Syntax for Dynamic Ada

and a Translator from Static to

Dynamic Ada Abstract Syntaxes.
Report 15: The Formal Definition of Ada

Dynamic Sequential Semantics

These deliverables will be issued in two ver-
sions:

Reports %14-%15: half-way, incomplete draft
Reports 14-15: final draft

Review: Reports %14, %15, 14, 15

B-34
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F

Work Package

.

Identification: K <

Name: Formal Definition of the Ada Dynamic Parallel .E

(ie Tasking) Semantics <

Purpose: To obtain a concise, formal definition of all -

y the tasking, ie concurrent and time-dependent .
% aspects of the Ada language. e

Contents:

Only one issue will be addressed:
) - The formal definition of the tasking and time-~dependent jf
: aspects of the ANSI/MIL - STD 1815A Ada language. The -
-, word formal means: to the extent, that the metalanguages ..
used can be combined formally. =
s - -
A The work will be carried out in two phases, as for WPs I-J.

. }:
o Requisites: pre: WP G-R .
post: WPs L-0-P-Q-R-5-X
. Man Months: 12 i

Deliverables: Report 16: The Formal Definition of Ada Dynamic
Tasking Semantics. g}
W
This deliverable will be issued in two ver-
sions: n
. .'P-
- Reports %16: half-way, incomplete draft T
N Reports 16: final draft .
LY . LS
: Review: Reports k16, 16 s
4
: 2
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b
g3 X
Work Package &{
! Identification: L -
Y
. Name: Integration of Ada Formal Definitions -
A :%4-
) Purpose: To combine the three part Ada formal defini- R,
tion (as obtained in WPs I-J-K) into one co-
- herent, consistent, and complete formal def- b,
e inition (formal, as defined on page I-10) 222
-~ one which is suitably cross-referenced, “
. indexed and otherwise checked. 5
& Contents: =
".'"("
= Three consistency and completeness issues will be addres- i
- sed: {?
- Syntactic: among definition parts with respect to usage i;
of abstract syntax defined domains and function types. -
~ Semantic: between definition parts with respect to pre/ fj
post conditions of defined functions, whether putative- Iy
ly defined, as in e.g. denotational definitions, axio- o
matically defined, as in algebraic definitions, or re- ’
write rule defined, as in structural operational defi- S
nitions, etc. e
o
- Pragmatic: between the FD and the informal Ada referen- b
ce manuals. 5:
The Correlation of the Ada FD to the ANSI/MIL-STD 1815A &%
will have as its ANSI/MIL-STD 1815A component a document 5
which is divided into a number of chapters, "one per group ﬁ%
of language features". This integration work package will é;
collect the appropriate parts from reports 12-13-14-15-16 -
(by means of the Ada FD Tool set) in a form analogous to D
the ANSI/MIL-STD 1815A layout. o
Requisites: pre: WPs I-J-K ' ;ﬁ
post: WpPs I-J-K-0-P-Q-R-S5-X e
Man Months: 8 ;ﬁ
Deliverables: Report 17: The Formal Definition of Ada .
Review: Report 17 o5
=
o~y
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Work Package

Identification: N

Name: Requirements for an Ada FD Tool set
Purpose: To establish the requirements that different

Ada FD user groups will put on a set of soft-
ware tools relating to the Ada FD.

Contents:

A number of portable, APSE-based software tools for the

creation, maintenance and diverse uses of the Ada FD can

be envisaged:

- editors: line, full-screen, and syntax-directed

-  a variety of pretty printers/displayers

- Ada FD syntax and type checkers, ie not checkers of the
syntax of Ada, but of the syntaxes of the Ada FD, and
the function types of its defined functions.

- interfaces to possible Ada FD interpreters

- interfaces to possible Ada FD based proof/verification
sub-system

- interfaces to possible Ada FD based ACVC test suite va-
lidators

In this work package a set of requirements are established
for such a tool set.

Requisites: pre: WP E (L)
post: WP O

Man Months: 5

Deliverables: Report 19: Requirements for a Portable, APSE-
based Ada FD tool set

Review: No
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e The :::
i gé‘r’:\an_ Project Description
Defirution 3
of Ada .i\
[GAS
'(4 :';:
0 Work Package e
! Identification: P 2
A
? Name: Informal Explication N
. — o
E: Purpose: To provide an english, ie. natural language 5:.
DA explanation of the Ada FD. “-
- Contents: T
v The Ada FD is necessarily terse, and expressed in a formal, :;}
R symbolic language. To facilitate its reading, and hence o)
. its acceptance and use, it is proposed that the Ada FD be S
- extensively annotated, in an english language, natural p—
. style. e
- It is expected that different user (target) groups will f?:
require different style explications -- the requirements -33
- for these will be defined in WP B. et
g A
= This work will be done with respect to (wrt) the individu- e
. al formal definitions =-- as developed in WPs I-J-K, rather Y
- than wrt. the integrated Ada FD of WP L. ﬁf
A
Requisites: pre: WPs H-I-J-K-L 0
i post: None at
) Man Months: 6 X
Deliverables: Report 25: An Informal Explication of the B
Ada FD -- an Introduction o
Report 26: An Informal Explication of the s
E Ada FD Static Semantics i
bR Report 27: An Informal Explication of the .
Ada FD Dynamic Sequential Semantics e
. Report 28: An Informal Explication of the o
s Ada FD Dynamic Tasking Semantics Nt
* Report 29: An Informal Explication of the A
g Ada FD Combined Semantics -
P'_‘. ":_
(- Review: Reports 25-26-27-28-29 o
\V-.
2
o =
-
N
R Y
N
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Project Description

Work Package

Identification: O

Name: Tool set Construction

Purpose: To create a portable set of APSE based tools
suitable for a wide group of Ada FD developers
and users.

Contents:
This work package consists of:
- The FD of the architecture of an Ada FD tool set
The design of such a tool set
- ' The coding of such a tool set
We refer to the contents description for WP N.

The present work package will deal with the specific is-
sues of the Ada FD: i.e. those for which the tools speci-
fically know that the object to which they are applied is
the Ada FD.

This is in contrast to tool sets that might have been de-
veloped for (ancestors of) the specification languages
(META~-IV, ML4, SMoLCS, CLEAR/OBJ, ASL, etc.) used in this
project. Insofar as such (ie these latter) tools exists,
this project will adapt them to the Ada FD tool set,
thereby enlarging its scope and utility.

It is to be expected that certain tools already developed
by the contractors go into the above tool set.

Requisites: pre: (WPs G-I-J-K-L-N)
post: None

Man Months: 19

Deliverables: Report 20: Ada FD Tool set: Architecture.
Report 21: Ada FD Tool set: Design.
Report 22: Ada FD Tool set: Users Manual
Report 23: Ada FD Tool set: Installation
Report 24: Ada FD Tool set: Primer

Software: Portable, APSE-based Ada FD tool
set .

Review: No
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Work Package

Identification:

Name:

Purpose:

Contents:

I-34

~Project Description

Q

Feasibility study: Mapping to the NYU SETL
Ada Interpreter.

To study the extent to which the Ada FD of
this project may be correlated to the exist-
ing SETL programmed interpreter for Ada as
developed by the New York University.

There are two semi-formal, near- or fully executable
models of Ada: the Karlsruhe (FRG) University Extended
Attribute Grammar (EAG) description of Ada, and the New
York University (NYU) SETL program interpreter for Ada.

In order validate to Ada FD, and in order to investigate
the possibility of letting either of these descriptions
serve as a basis for the ACVC test suite validation it
is necessary to establish, reasonably formally, a "map-
ping"” from (i.e. a correlation of) the Ada FD of this
project, to either or both these descriptions.

This workpackage will study a possible mapping to the NYU
SETL Definition.

Requisites:

Man Months:

Deliverables:

Review:

pre: WPS: Q-I-J-K-L

post: None

2

Report 30: Feasibility of a Mapping from the
Ada FD to the NYU SETL Interpreter
for Ada

No
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o n
ot Ada Project Description

Work Package

]
Identification: R i
Name: Correlations between the ANSI/MIL-STD 1815A X
Ada Informal Definition and the Ada FD. i
Purpose: To correlate the existing informal and the -
resulting formal definitions of Ada. =
Contents:
It has been suggested that eventually the ISO will adopt i:
an Ada standard which consists of two parts: an informal,
and a formal one -- much the same way as the CCITT has both
an informal and a formal definition of the CHILL language.
Also, to avoid, i.e. to attempt to alleviate (as far as .
is possible for pairs of informal and formal definitions) ~
discrepancies between these, a systematic attempt must -

be made to correlate them.

Finally such a correlation also serves to make the Ada ‘5
FD more accesible. ’

The work consists of producing two pairs of annotated do-
cuments, both electronically maintainable: one, derived
from the Ada FD, which correlates its formulae to the ANSI
/MIL STD 1815A document, and, another, derived from this
latter document, which correlates its sentences and para-
graphs to the formulae of the Ada FD. Both these documents
may need further, generally explicative notes.

A

b

"
Requisites: pre: WPs I-J-K-L =
post: None (I-J-K-L (1)) .
“7
Man Months: 4 -
Deliverables: Report 31: An ANSI/MIL-STD 1815A Ada Refe-
rence Manual to Ada FD correlation. o
Report 32: An Ada FD to ANSI/MIL-STD 1815A i
Reference Manual correlation. -
K
This deliverable will be issued in two stages: ]
%31-%32 based on % stage WP I-J-K reports, and
31-32 based on final WP L reports. &:
Review: Reports %31-%32-31-32. ”
| g
2-41 _
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ﬁ “ - ':'f Project Description

Work Package

Identification: S

Name: Feasibility Study: ACVC vs. Ada FD Validation
ﬁ' Purpose: To ascertain the extent to which the Ada FD
' may serve as the direct, or indirect basis
s for a validation of the ACVC test suite.
'\
w Contents:

<. It has been argued that the Ada FD should, or could, be

¢ used as the basis for a formal verification of the ACVC
test suite of correct and incorrect Ada programs. The pur-
pose of this work package is to study the feasibility of

- this thesis. Different approaches are conjectured:

- direct executability of the Ada FD

- (automatic, or interactively assisted) proof/disproof
of properties of each individual ACVC program

- indirect executability via either the Karlsruhe EAG, or
the NYU SETL descriptions, or both -- either of which

2y

to the presently proposed Ada FD.

Requisites: pre: WPs I-J-K-L-Q
post: none

Man Months: 3

J

o
.

Deliverables: Report 33: Feasibility of ACVC validation
with respect to the Ada FD

x|

oo

Review: No

have formally, or systematically been shown "equivalent"
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Definition
of Ada

Work Package

Identification: T

Name: 1SO (ANSI, ECMA) Liaison

Purpose: To guarantee that the present project results
in a FD, which

reflects as much as possible of the current
state of Ada as discussed within ISO, and

may possibly influence Ada changes in the lst
S year Ada review by 1SO, and

will be ultimately acceptable by ISO as part
of their subsequent Ada Standard.

Contents:

Travels to ISO Ada standardisation meetings, and corre-
spondance with other organizations as determined from wp A.

It may be expected that the ISO liaison may lead to de-
sire by 1SO or other official institutions that the current
project attempts to work out proposed changes to the
ANSI/MIL-STD 1815A (January 1983). The present project has
not included this in the ressource estimates, and does

not intend to do so.

Requisites: pre: None
post: None

Man Months: 4

Deliverables: Unnumbered reports: travels, deliberations
and status

by r_'r$ O R CR AR \5"\( NiyTs’
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“3' Project Description

Work Package

Identification: U

Name: Management
Purpose: To coordinate internal work packages, external

liaisons and reviews, partnership sub-projects,
and CEC liaison.

Contents:

Establishment, monitoring and control of rolling plans and
resources, budgets and finances.

Man Months: 26

Deliverables: . Monthly and & year reports to CEC
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: Work Package ]
Identification: V ."
)

3 Name: External Reviews
Purpose: To guarantee quality and acceptance of result- g

ing deliverables.

LA
Contents: e

International groups of Ada and FD experts will be estab-
lished, consisting of experts in the relevant fields as

well as representatives from relevant part of the Industry. E
Their members will be agreed upon by the CEC and <
the contractors. The groups will be referred to as the Ada ~

FD advisory groups. These groups will regularly receive
draft and proposed final reports of the various Ada FD, -
informal correlations, etc. The review process is then one

of obtaining input on the form and content of these docu- o
ments. This will insure that all achademic points of views \.
are taken into consideration as well as the practical use

of the results.

The CEC and the contractors will set up a review board to

assist in evaluating the results of the projects, using as

a major input, the comments from the international adviso- '!
. ry groups. See also sect. 6.3.5. .

Funding of these activities is not included in this pro- £
ject, except for the contractor part. t{

. &
Requisites: pre: WPs B, D, E (see WP F), G, I-J-K-L, P, R NG

post: WP -~ accordingly

! Man Months: 4

Deliverables: Reports: draft, and final review reports.

®y "¢ "y
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‘ul , o Project Description

Work Package Y

Identification: X

Name: Educational Material
Purpose: To plan a set of tutorial courses on the use

of Ada FD and implement one of them.

Contents:

In order to enlarge the user group and make the Ada FD

accessible to people not familiar with formal definitions,

tutorial type courses will be planned.

The work package consists of 3 parts:

1. Focusing on the user groups defined in wp B, course
contents will be defined for each, emphasizing the
needs of that particular group.

2. Implementation of one of these (typically 2 week)
courses and

3. holding a trial course.

Requisites: pre: B-G-I-J-K-L
post: none

Man Months: 10

Deliverables: Report 34: Tutorial needs of specific user
groups Course notes

Report 35: Course notes and Instructors
manual

Review: Report 34
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of Ada

6.3 Management Issue

In this section two issues will be addressed.
- gsetup of the management organization
- work schedule and deliverable .:tems list.

6.3.1 Project Organization

The project organization is defined in the following organi-
zation chart.

T T ]
| Review | erec
] Board | |
, Managerial]
1Board |

Project T |
= Manager : PrOiS%E
[ Group
Leader |
Toup Toup

| chpor- | | Members |
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y 6.3.2 Managerial Board "2l
s

o

The managerial board is responsible for all decisions af-
, fecting more than one partner, in particular:

. - all contractual matters

- approval of all major technical decisions concerning re-
quirements for components delivered

- internally, by one Contractor to another

- externally, by one Contractor to the Commission or
a other parties outside of the group of Contractors

- approval of significant changes in the development plan
and all changes that affect the delivery of a contract-
ual item to be submitted to the CEC

- monitoring the progress of work including quality con-
trol and quality assurance procedures.

The managerial board consists of one representative from
each of the contractors. The representative must be able
to represent his company in financial matters, and to nego-
tiate with the Commission on behalf of his company. He
will further endeavour to insure that his company satis-~
factorily performs the execution of tasks assigned to it.

To resolve major technical problems the managerial board
may appoint fast working committees.

After having informed the others, each contractor shall
have the right to replace its representative.

The Managerial Board shall be chaired by the Prime Con-
tractors representatives.

It shall meet at least 3 times a year or, at every time
when necessary at the request of one of the Contractors.
Meetings shall be convened by the Chairman with at least
seven days' prior notice with agenda. e

A secretary shall be appointed by the members of the e
board. Minutes of the meetings of the Managerial Board i

shall be drafted by the secretary and transmitted to the S
Contractors without delay. U

The Project Managers shall attend the meetings of the )

managerial board. ;
Decisions must be unanimous. e
o
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6.3.3 Project Managers

Each of the contractors appoints a Project Manager. The project

manager appointed by the main contractor also acts as
project coordinator.

Each project manager is responsible towards the managerial
board for

- the coordination and scheduling of all project tasks
assigned to his site

- the punctual delivery of any contractual item in project
activities of his site

- definition of suitable programming and documentation
standards to be followed in the project

- acceptance test procedures

- configuration, ordering, installation, and maintenance
of any hardware required for the project

- reporting to the Managerial Board about the progress of
the technical work

- presentation to the Commission and/or appointed techni-
cal experts

- maintaining contacts with the Ada related communities
mentioned elsewhere.

In addition to the site manager each contractor will have
a deputy project manager who will take over the respon-
sibility of the project manager during any long-term
absence of the project manager.

The project coordinator is additionally responsible for
ensuring a continuous, consistent contact between
managerial board and project managers.

Among the responsibilities of the project coordinator are:
- co-ordination af activity plan,

- co-ordination of documentation standards and all matters
relevant to integration of the different projects sites,
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| - preparation and distribution of regular overall pro- '
! gress reports to the CEC, g
e
- organization of presentations and review meetings etc., E&,
- maintaining the formal contact between the managerial ; :v
board and the CEC, (2
, am e
E - collection of the Contractors documents and statements Y
of expenditures and forwarding thereof to the CEC. gy
t 6.3.4 Group Leader -
I Each group leader is accountable to his project manager for ﬁ;j
I
- the execution of the tasks assigned to his group T
&; - the correct performance and punctual delivery of these N
tasks in accordance with the gpecifications and schedu- P
les approved by the managerial board N
(.
[ - issuing regular progress reports for the technical work R
assigned to his group PN,
q' - keeping the project manager informed about any important .
- problem (technical as well ag non-technical) that might
“ arise in his group. 1In particular, the group leader
|E: must report immediately to the project manager any pro-
- blem whose solution might involve a change in the re-~
sources allocated to the task
o
5% ' -« co-ordination of all group technical activities in-
cluding
e
b - adherence to standards
‘\:'.
. - s8specification of work to be performed by group mem-
Ej bers
- ~ s@pecification of important interfaces
{2,
&: - quality control.

6.3.5 Review Board

The Review Board is a technical board which supports the .
CEC and the Contractors with technical advice during the -0y
project reviews and the project presentations. 1Its members i
are selected jointly by the CEC and the Contractors (ref wp V), o
and should represent all user interest.
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6.3.6 Project Planning and Follow-up

Each contractor will set up procedures to plan and monitor
his part of the project. The procedures will include:

~ definition of internal milestones (contents and date):
progress is measured solely on completion of milestones

associating ressource estimates and allocating persons
to each work package

monthly reporting describing which results have been
reached, the ressources consumed and the overall plans for
the remaining part of the project (a rolling plan).

6.3.7 Project Reporting

For every calendar month there will be a Management Control
Report to the Commission. The Report will be two A4 pages
long and contain statements on:

work package started in the last month

work package completed in the last month

work package delayed with reasons, and actions to be taken
to correct

work package scheduled for the subsequent month

revised project plan if necessary.

There will be Financial Statements every six months.

All project reports will be in English.

All deliverables to the Commission will be provided to all
partners and subcontractors.

6.3.8 Work Schedule and Deliverable Items

This is the planned division of work which is subject to
change during the project. Major Changes which influence .the
division of responsibilities between the partners, must be
approved by CEC.
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in this report the motivetions of the choice of en under!ying model for Ade ond its mein
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1.0 INTRODUCTION

We sgree with the opinion strongly put forwerd by E.K.Biumin [Blum 84] thet eny ressonsble
semantics of Ads should rely on an underlying sementic model, and thet we can be misguided if we
just look for s syntax directed semantics without & preliminery study of such & model. This is
perticularly true of Ads which follows o sequentisl declarative/imperative style even when
introducing concurrent festures (e.g. the syntectic construct for the tesk crestion hes the form
~ of & declarstion), so thet there is no essy relationship between the text of 8 program and the
stetes of its executions.

Nevertheless, since the methodological importancs end the ecceptance of the syntex directed
: epproech is out of question, we think thet en effort should be mede for giving e syntax directed
I semantics relying on 8 cleariy defined and understood underlying model.

In this report we will outline the motivetions of the choice of & model and its mein festures. In
enother report [Astesiano et ol. 85 b] it is shown, on some semple longuoges with Ade-like
features, how to connect an ynder1ying mode! 10 8 syntax directed spproach.

We stert from the sssumption thet the beheviour of en Ads program is represented by o
concurrent (flegged) transition system specified in the SMoLCS style (see [Astesiano 84] for
on infor mel introduction and {Astesiano et ol. 85 8] for foundetions) .

We went to investigste the oversll structure of this specificstion, i.e. the possibility of
defining it in on inductive woay a3 well ss the overall structure and mesning of the needed
Y informetion, structures snd actions.

; In defining this operstionsl model we try to remein o3 much ebstrect 3 possible, modelling
-, explicitly only the semantically “non- hiddeble" festures of the language.

s

In the project, the semantics of Ade will be given in two parts: o first one specifying the stetic

sementics of the Tanguege, ond ¢ second one specifying its dynemic (sequentisl and concurrent)

sspects.

As this model will be used as ¢ reference in the description of the dupamic sementics of Ade, it

neads not to reflect all the properties already steted in the gtatic sementics pert.

This epproech is rether different from the stenderd one edopted in giving denotational semantics,

. in which often stetic and dynamic sementics are specified together (e.g. modelling type checking
s if it occurred dynsmically) ; indeed we sssume thet our progrems ere slweys correct from the

' point of view of stetic semantics (e.g. scoping and type checking).

: Being our model more dynemics-oriented and less stetics-oriented, it seems ressoneble to meke

some sssumptions about the syntex of the program, which mey simplify the oversl) description
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of the mode).
For exemple, & useful gssumption is thet all the identifiers (introduced by declarations)
eppesring in different places in the source text sre different. This simplification sllows to

Y

{ essociote to each name, ot esch point of the text, o unique mesning; with this epproech indeed,

; problems of hiding or overlosding are supposed to be resolved almost completely in & previous

- step consisting in 8 simple translation snd checking of the source Ads text.
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2.0 LOOkIIG FOR AN INDUCTIVE STRUCTURE i:

A besic ides of the SMoLCS methodology is thet o concurrent system is modelled &3 ¢ lobelied
transition system whose states consist of the states of the component processes (subsystems),
plus some global infor metion. These states are ususlly represented ss couplies -
" <3yl syl szl sy, inf>

DRI LPY UL L

where 311 3o 1 sz l.ds, ise multiset of stetes of the component processes.
The transitions of & state of & concurrent system are inferred from the transitions of the .
component processes by means of formulas of the form:

cond ~agIlo s a 8,180 s50a sty 5> s Doy =

Given & basic transition system, specifying the structure of the component processes, snd some NG
perameters relsted to synchronization,psrallel compesition and monitoring, we can produce the -
final transition system in 8 canonicsl way using the SMoLCS methodology. _

If the component processes are themselves concurrent systems, they can be specified in the seme ‘
wsy. A SMoLCS specification of 8 system mey be inductive, 8s it is typicsl of the SOS spprosch .
[Plotkin 81]. ]

It is not evident how on Ade progrem might be mapped into one of these inductive or hiersrchical :
structures in o rather netural way. Several siternstives sre discussed, together with their -
sdvanteges snd wesk points. -«

First of oll we must give on intuitive mesning to the hierarchical concept of “subsystem™ . in .
generas) it is useful to sssociete 8 subsystem with the execution of some syntactic construct of the ;;15
lsnquage. For exsmple, if we want to put in evidence the concurrent structure of 8 program, we
might represent by e subsystem the behaviour of & tesk; otherwise we might represent by s
subsystem the behaviour of o block, or task, or procedure, putting in evidence the nested
structure of sll constructs.

. of
Then we must define which is the relstion defining when 8 subsystem is 8 component of another -
subsystem, and what is the infor mation modelled in each subsystem &
We begin with ¢ discussion of two rather interesting siternetives, bssed respectively on tie " |
mastership dependence between masters and tasks and on the environment/store structure. i
2.1 A dependence drives dynemic structure i
In this section we suppose thet an Ads program is composed exclusively by tssks (types) (ie. no -
|
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syubprograms nor blocks are used); this sllows us to give o subsystem o simple mesning (task
execution). This restriction might be removed easily but now it ellows us to put in evidence
with the lesst effort and without any loss of generslity the problems related to the hierarchics!
decomposition of an Ade progrem.

Page 7

In this model the direct inclusion relstion between subsystems explicitly represents the direct
dependence relstion between tasks, i.e.
if sub1 is the subsystem corresponding to the tesk Ty, end
s is the subsystem corresponding to the tesk T,
then sublisesubsystemof s <==> Ty isadirectdependentof T.

When o new tesk X is crested, o new subsystem is crested within the subsystem corresponding
to the tssk “mester” of X. In this way, the structure of the system explicitly models the
dependence structures within 8 program. We can observe thet in this way the subsystems
corresponding to all the tesks which are direct or indirect dependents of & tesk T, ere inciuded
(ot verious levels) in the subsystem corresponding to T.

As 8 consequence, 8l the interections between tesks besed on this dependence relstion ere
modelled in 8 very netural and simple way.

For example the effect of on gbort statement on o tesk is completely defined o3 & transformetion
of the corresponding subsystem (this subsystem snd el its component subsystems become
“abnormal” or completed), ellowing & direct representstion of whet is specified in the manuel.

If we suppose thet o subsystem is represented by the following scheme :

< task-name, tesk-stste, octusl-action , subsystemil ... | subsystem n>,

or using e grephic notetion (following the style illustrated in [Bjorner et . 80} ):
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) <tesk-nomespec.tesk-stete,. ..

Page 8

(note thet these graphs can be formelly defined )

becomes

or using the graphic notation:

N Lt e Y T oS e e e e e
Tud -t(.\\-\‘f-.'-:{' '.':-.':!.."".'{‘:t\':‘.':\.’..‘. e

then the effects of an abort statement on the task T1 csn by illustrated, for example, by the
following trensformetion of the corresponding subsystem:

T1, gctive, ... <T2, tive ,deloy(...), <T3,gctive ,if ...»>l < T4, jermineted, ..>

<T1 ,gbnormal,...,<T2 completed, delay(...),< T3 gbnormal if ...,»51 < T4 ferminated ...»»

<T 1spec octive,..»
<T1body,...>
<T2spec xctive,...> | <Tdspec terminsted,...»
‘ ¢T2MU,...) ) <T4M“"”)
<T3spec active,..»
<T3body,...>
becomes:
B~68
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<T 1spec,abnormel,...>

<T1body,...»

<T2spec,completed,...> | <Tdspec terminsted,...>

<T2body,..> T4body,...>
4 <
<T 3spec,sbnormel,...>

<T3body,...>

Anslogously tesk terminetion is essily modelled ss occurring when the corresponding subsystem
is “completed” ond o1} its component subsystems (if any) ere "terminatoble” (o subsystem is
seid “terminetable” when the corresponding tesk is termineted or suspended on & select
stetement with sn open terminete alternstive end oll its subsystems ere “terminsteble”),
following strictly the menusl description of this event.

Apert from sllowing s netural representation of these synchronized actions, this model presents
some disadventeges in describing other kinds of intersctions, not related to the definition of the
dependence relation between tesks.

As 8 consequence of the Ade definition of dependence, it may happen thet when o tssk is crested
by the evelustion of en allocstor, its mester is not the tesk which hes crested it but some other
task ot ¢ higher level, more precissly the tesk which hes eleborsted the corresponding sccess
type decloretion. In this model the request for task creation hes to propegete upwards end the
subsystem corresponding to the cresting tesk hes to interect with some higher subsystem (by
synchronizstion or by resding its informetion) in order to des! with the sctivation of the
crested tesks .

This is in perticuler iltustrated by the following simple exemple:
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‘
task MASTER; 5
tesk bedy MASTER is )
¢ tesk type Tis .. .end T; .
. type RTis access T,  -- the tssk "MASTER" declares the sccess type ;\
D -- designeting T -
. tosk bodyT is ... odT; "
> tesk INNER; - - this is o nested tesk within the tesk "MASTER" -
N tesk body INNER is
k- task CREATOR ; -~ this is o nested tesk within the tesk “INNER" =
tesk bedy CREATOR is
> X:RT:=mewT; -~ the task “crestor™ activetes an instence of T N
N begin == (which is e dependent of "MASTER")
N ... 5
- ond CREATOR;
N begin “
\ :- 7
- ... e
X ond INNER Py
begin |
ke end MASTER,; -
E:
the situstion during the evalustion of the sllocstor new T is illustrated below: E
" o
; <MASTER octive begin...,<INNER getive,..., CREATOR activating,..mewT»> < X ALL getive,...»»
‘. e
or ysing the siternetive graphic representstion:
¥ DY
¥ .
o N
" Jat
iy -w
X =
A o
14
L
; 2
| |
-
] B-79 ]
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<MASTER spec active,...>

<MASTER bedy ,begin ...,...>

2

J ANNER SpeC sctive, .. > K ALL spec xctive, >
| INNER body > KALL bedy , ..>

CREATOR spec, octiveting ...>

J CREATOR body , mevwT, >

In this case the subsystem corresponding to the tesk "X ALL" is crested at ¢ hgher level then the
subsystem corresponding to the task "CREATOR" (weiting for the completion of the sctivetion of
XALL).

This hiersrchical structuring should silow us to split the description of the ¢epvironment end the
gtore ot different levels in the model following the principle of “information hiding".
Ressonebly, we mey think to essociete to each subsystem the locel environment end store defined
by the elaborstion of the declarative pert of the corresponding tesk. References to local
definitions end objects (i.e. defined in the declarstive part of the corresponding task) ere
described rether neturally; references to non-locel definitions and objects instesd are
represented in en unneture! heevy way. In fect the dependence reletion between tesks doss not
correspond {o the nsturs] structure of the environment and so it mey heppen thet references to
non-locel entities (here and in the following we mean by entity an Ada entity, snd for object sn
Ade object /LRM 3.1(1), 3.2(1)/7) have to propegste upward through subsystems which should
be not visible nor eccessible to the tesk (this is not o nice property). This situstion is
illustrated in {he following exsmple:
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tesk OUTER;

tesk bedg OUTER is
X : INTEGER; == ine declerative pert ore declored some entities

task type 7, -- endatesk type 7
tesk bedy Tis
begin

X:.= 3, -~ tesk instences yse some previously declered objects

endT;
tosk CENTRAL; - - another tesk is declared in the ssme declarative pert

task bedy CENTRAL is
Y : INTEGER; == entities end objects mey be declered locelly

' INNER : T; -- but sre not not visible from en instance of the task type 7

begin ...
ond CENTRAL;

begin ..
end OUTER;
the sxecution of X:s3 by the task INNER is illustrated below:

QOUTER getive,..., <CENTRAL gctive, ...,< INNER getive, X:=3 .0

or using the slternetive graphic representstion:

) QUTER spec octive,...,...>

CENTRAL spec ,octive,.......0

CENTRAL body . »
<INNER spec active,...,..»

<INNER Dedy X=3
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& Though INNER is & subsystem of CENTRAL, its entity accesses should propegate at least to the i
OUTER subsystem (skipping the CENTRAL subsystem). 28
%
g These references in fect should in genersl be propegeted from the subsystem corresponding to :‘7'
the tesk which hes crested s new task NT, to ot lesst the subsystem corresponding to the tesk et
g which hes eleborsted the deciaration of the type of NT . 3-_:
)
N One of the important properties which make ressonsble 8 hierarchical structure is thet from the 3':‘
2 outside of & subsystem it is not required direct yisibility of the component subsystems. This 3
g property is verified by this model only pertly; indeed, though the locsl environment snd store f.j:_.
7 of o subsystem con be used only from inside of the subsystem, other information about the I;I;ZE
-, subsystem itself must in general be visible from higher levels. A task of & given type T may be -‘,Ef-‘,
% in general sccessible to other tesks whose type is declored ot the same level of T. ool
‘;',' In this model it is not difficult to build en example in which o subsystem S1 might interect :
™ (heving visidility of it) with another more nested subsystem S2. This situstion mey occur Z;IE“
i when tesks sre pessed as paremeters in entry cslls os fliustrated in the following example. 2
| %
i tesk OUTER b
[ task bedy OUTER 13 =
. task type T is entry EE; ond T; -- slosk type T is declered e
P, . task bodyTis .. .ondT; N
B tesk S1is entryE(S2:T); endS1; -- otesk object is crested, RO
tesk body S1 is 7y

-
7
Y

begin == willing to receive, s on entry perameter 5
s sccopt £ (S2:T) do S2.EE ond accopt; - - o task object whose type is T £
: ondSI; %
o tesk S ; ~ - 1n the ssme declerstive pert of the other tesks ::
- task bedy S is -= another tesk object S is created ~
$2:1,; ~- and crestes ¢ task object (of type T) o
i begin =~ (the new instance is o dependent of S itself) T
$1.E(S2); -- the new instance is then pessed 1o S1 t:i
i odS; ¥
bogin ... : T~
ond OUTER; %

......................
...................
-----------------
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Page 14
the situstion during the catl of S2 .EE is fllustrated below:
<OQUTER, gctive,... ,<S1 galling, S2.EE,»1¢S,in- rendezvous, $1.€(...), 52 getive, ....>»

or using the alternative graphic representstion:

) OUTER gpec octive,...,..»

OUTER body ,..>

<Sspec in-rendezvous,..,> | Slepec callinyg,...,..»

Shedy S1E(.), | S1bedy s2E,.>
S2apec wctive,..>

“szw' PR 4

S1, which is et ¢ higher ievel than S2, issues an entry call to S2, which may be not willing to
sccept it.

The conclusion is thet only part of the information sbout o tesk could be modelled within o
subsystem (i.c. informetion about local environment end store ), and thet other structures ere
still needed in order to meintein the information sbout rendezvous (queues, state of entries...),
tesk ottribute’s velues (CALLABLE, TERMINATED, COUNT), stote of the tesk (ectiveted, in
sctivation,...).

This informetion ebout o tesk, which cannot be directly modelied within the corresponding

subsystem, could either be defined &3 globel or split ot different levels in the dependence driven
structure.

But even essuming o3 globel the needed information, still we have the problem thet modelling
rendezvous requires some kind of sypchronized ection between subsystems in different
branches of the structure , which sre ot lesst " unplessent ~ to represent. A possidle
elternative might be not to model this kind of sctions s synchronous sctions, for example
modelling rendezvous by mesns of messege exchonges, using shered memory, between processes
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( indeed in this cese an explicit abstrect representation of tesk synchronization would be lost).

The situstion does not change if we relesse the initial hypothesis thet & program fs composed
exclusively by tesks (types) end either we essociste o subsystem to the execution of ssch mester
(tesk, block, subprogram) of the program, or we sssociste o subsystem to task executions only.

Note: The problems illustrated previously sre put in evidence by the border-line cese of s
function returning o tesk which wes e dependent of the function body.

In this case we heve thet the subsystem corresponding to the function body no longer exists
(because the function is termineted) though the tesk corresponding to one of its components is
still accessible, for example it can be checked for terminstion (evelusting its TERMINATED
sttridbute, or trying to stert & rendezvous) (reelly it is termineted!) (informetion sbout
subsystems which might no more exist should be kept somewhere ).

2.2 A scope drivea siractare of Ade programs

Al%0o in this section we consider first the case in which an Ade program is composed exclusively
by tesks (whose beheviours ere modelled by subsysiems ).

(n tins model, if o tssk T decleres severael tesk types, the subsystems contsined in the subsystem
sssocisted to T are the subsystems essocisted to o1l the instances (tasks declered ss objects,
crested by ellocators or &3 subcomponent of other objects ) of these tesk types; ie
if sub1 is the subsystem corresponding to the tesk T4 ,snd
8 is the subsystem corresponding to the tesk T,
thensubt ise subigstom of 8 ¢<==> typeof T, is declered in the declerstive partof T.

In this wey the dynemic structuie of & progrem directly refiects the sctuel structure of the
snvironment (end store). This spproech hes been eadopted in other operstions! models for
sequentisl /perellel langueges ( see [Berry 71) [Johnston 21)).

Some edvanteges of this epproach are its similarity to other standerd operstions! models for
sequentiel lenguages, end the fect thet in this wey references to locel and non-loce! definitions

ond objects are represented in the most naturel snd simple way.

On the other side we should not need to split the infor metion about o task et different levels of
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our structure, because simost all the visible properties of & tesk could be recorded ot the ssme
leve! of the corresponding subsystem (scope rules sssure us thet s component of & subsystem is
not visible from outside of the subsystem).

As in the previous csse the effect of & tesk crestion should propegete upwsrd, in order to require
the crestion of o new subsystem, ot the level of the declarstion of the corresponding type (and
similarly it happens for subprogrem calls).

But s mejor problem with this epproech is posed by the representstion of sll the “dependence
driven” synchronized ections.

For exomple, sterting with terminstion problems, o tesk suspended on o select stetement with
on open terminete slternetive should look st the stste of its mester (is it completed?) in order
{o decide whether or not to terminate, even if its mester is not visible in its environment (it is
on ususl cese in Ads). This situstion, requiring otherwise an eccess to o deeper subsystem,
destroys our hope of keeping ell the informetion ebout o tesk locel to the corresponding
subsystem. The following is o simple example of thet:

tesk OUTER,
task bedy OUTER is
task type Tis entry £, omdT; -- g task type T is declored
tesk body T is
begin
sslect eccept £, or termimate; -- whose instonces moy execute o selective
-~ weit
end select. - = (they can terminate if their mester is
-- completed)
o T;
tesk INNER; -= o task object INNER is crested
tesk bedy INNER is
X1, -- which crestes s new instence X of the
-=- tesk type T
begin ... == ( Xis o dependent of INNER)
end INNER;

begin . ..
ead OUTER;
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the situstion during the execution of the selective wait is illustrated below:
<OUTER gctive,... < INNER gctive,...,>I< X suspended, select . or .terminate ,..»»

or using the eiternetive graphic representstion:

! OUTER spec active,..,..>

| QUTER bedy ,..>

<INNER apec ,octive,...>] Xopec suspended,...,...»

INNERDedy , > | body select...or. terminate,»

Obviously X does not have sny visibility of INNER which might be nested even more deeply.

Moreover the resulling synchronized sction (of the terminstion of ¢ mester and oll its dependent
tasks ) should involve several subsystems in general spread scross the structure in o completely
erbitrery wey.

Exactly the same prodblem arises ebout the sbort stetement: the tesks which shoyld become
sbnormel or completed are spread, without any constraint, ecross the whole structure.

It follows necessarily that the ections of this kind should be trested ss top level synchronous
sctions (s possible slternetive might be not to model this kind of actions ss synchronous ections,
for example modelling conditional termination by means of messsge exchenges between
processes; the disedventeges of this spproech heve elresdy been mentioned ).

We can observe thet even synchronous sctions relsted to rendszvous mey {nvolve subsystems
located st different levels of the structure, but in this case the situation is not very different
from the previous model, end it fs o direct conssquencs of the lenguesge festures (ellowing
synchronized actions between tasks ot different levels in the environment ).
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Nevertheless we can observe that in this case, 83 ¢ consequence of the neturs! structure of Ads
programs, entry calls csn never occur from the outside of s subsystem towards sn inner
subsystem, but elweys from the inside towerds outside (o tesk is elweys within the scope of the
type of the task thet it is calling).

In the cese of full Ads programs (i.e. relessing the previous restriction), in order to preserve
the adventeges of 8 scope driven structure, we must represent subprogrem executions like tesk
executions (sssocisting & subsystem to esch subprogram ectivstion, st the level fn which the
subprogram was declered). But in this way we loose sn explicit model of concurrency, tresting
in 8 uniform way sequentisl snd concurrent constructs snd mixing these conceptually different
sspects.

The next example illustrates this issve:

tesk OUTER;
tesk bedy OUTER is
precedureQ is ... ond Q;
task INNER ;
task bedy INNER is
begin
Q;
end INNER;
begin ...
end OUTER,

the situstion during the execution of Q is illustrated below:

<OUTER active,... , < INNER ¢olling Q,,>,< Q,gctive, ....... >

or using the alternetive graphic representstion:
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P OUTER spoc octive,...,...>

| QUTER body , >

| INNER spec  catling, ,.> | Aspec active,...,..»

<INNER body ,Q,..> Abedy,. >

per

We can observe the similarity in the representstion of Q and INNER (s procedure snd a task ).
2.3 Metivatiens for a lisearized mode/

Looking ot the problems which srise when we try to mode! inductively and hierachicslly an Ads
program, we heve to ask whether these problems ere reloted to the model (we heve not found the
right structures in order to describe properly an Ada program) or to the language (does it
really exist o sementic inductive structure corresponding to the inner structure of the
languege?).

We can in fect observe thet en Ads program execution is driven by means of many different
structures (dependences, ectivations, scoping) without & mein one. Whichever relstion we
choose, in order to define hiersrchicslly our model, we shouid desl in every case with the
introduction of some kind of globel informetion, end/or with sn heavy representstion of some
kind of synchronized sctions.

So we think that perheps the best solution is not hiersrchical, but e single level one.

In other words we directly mode! ¢ program es o set of concurrent processes (ell ot the same
Tevel ). Apparently this choice mey seem lecking abstraction, but in the end it is the choice thst
models in the closest way what is expressed in the menusl :“Tesks are entities whose execution
proceed in parsllel in the following sense. Esch task can be considered to be executed by e logice!
processor of its own. ..°. elsc the rendezvous is descridbed without eny reference to o
structure. And perheps it is not o csse thet other sementic models for Ade (e.9. [Bjorner et ol.
80) [Dewsr et ol. 83]) heve sdopted eimost the ssme spprosch. Environment, memory,
dependences, snd other infor mation might be modelled as global and shared.

in conclusion this solution seems to evoid all the mejor dissdventsges of the previous csses,
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- However note that modelling all the tesks ot the ssme level, does not mesn thst we heve to )
-\.; abandon en appropriste structuring globel informetion (e.g. scope-driven for environment and ::"
g~ store). '
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3.0 GLOBAL INFORMATION

In this section we illustrate the requirements (end their motivations ) sbout the structure of the
globel infor metion in the linearized tasking mode).

in the SMoLCS epproach the local infor mation of & subsystem is not directly visible from other
subsystems ot the same level. This implies thet whenever o subsystem needs some locsl
informetion about en other subsystem, it mey obtein thet either looking in some globsl pert
(globe! information) or by mesns of ¢ synchronized ection with the other subsystem during
which the needed infor mation is received.

Unless we want to mode! non-10cal memory and environment accesses by mesns of synchronized
octions (with an unplimnt confusion in the representation of concurrent and sequential sspects
of the language), we heve thet memory end environment should surely be shered (globel)
informetion, es well o3 other information, like dependence relationships, tesk stetes end entry
stetes, which is in genersl needed by more then one task.

On the converse, the informetion used only by & single tesk might be represented ss locel
informetion of the tesk itself (for exomple the set of the nomes of the tesks to be ectiveted after
the elsboration of s declarative part). '

An overs!! mete-requirement over oll the structures within the FD is thet they should be kept
o3 abstrect o3 possidle, i.e. they should meke explicit only the semeanticelly relevent properties
for which they are introduced, without the eddition of implementstive deteils. Moreover
whenever possible, we would like to follow o stenderd wey in defining these structure (for
exsmple in the csse of the environment ).

3.1 Environment

it should be clesr from whet seid in the introduction, thet the environment represented in this
operstions! mode! need not to reflect ol the properties slresdy steted from the stetic sementics
step. This mesns thet the informel mesning of the “environmenmt® is not ¢ structure used to
represent the set of sssocietions (between identifiers and entities) which are visidle in o
certein instent, but rether ¢ structure used to meintein the needed sssociations in order to
mode! the execution of an Ade progrem (these essocistions mey be more then the really visidle
ones, provided thet the resulting effect does not chenge ). '
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"
We think thet the environment should include only those sssociations, between identifiers and "
«. Ade entities, introduced by the elsborstion of (explicit or implicit) declerstions. Objects X
< (Left-Yolues ), which are not directly nemed by declarstions (e.g9. subcomponents) should be .
B obtsined by the spplicstion of basic operstions (indexing, selection of components) over -
oo composite objects. o
-3 .
3 Inour model we would like to follow the stenderd style, where the environment is stetic outside o
¢ declarstive part, §.¢. where sssocistions cannot change os 8 side effect of stetements. =
- 2
’- It is not s0 obvious that this is the most correct model for the environment in Ads, becsuse of the
'_ presence. of dynemic objects ( objects whose internel structure mey chenge o3 effect of o
‘statements ) o8 {s fllustrated in the following example: |
% -- ¥ is an unconstrained variable whose type is R
‘ «h» Y= (3,00, ,c")); type R (N :integer:=1) is
¥ s recerd ]
YTEXT(S) = ('d'); TEXT : string(N); =
== it reises CONSTRAINT ERROR ead recerd; 3
«B»  Y:=(5,(¢,e.T,9,N)); -
Y.TEXT(S) := ('¢’); .
- it works successfully '.jzj‘
: It is not clear thet the denotation of ¥ should be considered the same (st <cA>> and <<B»), =
:: provided thst the applicstion of o selection and & subsequent indexing operstion on ¥ produce
different results (o3 Left-Yalues). N
‘ The problem srises essentially if we want to consider the infor metion sbout the structure of ¥ as L
7 part of the denotation of ¥. -~
; -
'f Even sssuming thet dynemic objects do not creete any probliem, we ere not ellowed to consider il )
P the essocistions of the environment es constent ones.  In fact, because of the two step a
’ introduction of entities {program units, tesk types, deferred conc’snts, incomplete types, )
: recursive types) we must explicitly des! with updetes of slreedy introduced denotations in the N
b environment. ¥
' a

v
e em. ma
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This “limited kind of dynemicity™ however hes & deeper influence, on the structure of the
environment, then one would expect; for exsmple it does not sllow to pess to esch construct 8
copy of its own environment, avoiding in this wsy the existence of en explicitly shered
environment (es it usuelly heppens in the standerd sequentisl cases). Problems, in this cese,
result out of the combinstion of the mixing of concurrency and of the two step {ntroduction of
entities (ss illustroted in the following exsmple ).

=5
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773

i~ . == within e decleretive part

b task type T; - - anincomplete task type specification is introduced
":_‘ PR

N packege PACK is end PACK;

. peckege body PACK is
E‘ task INNER;

task bedy INNER is -- g hew task [NNER (using thet specification es &

; type A is sccess T; -- complete specification ) is then created

- REF :A; '
i . begin
2, REF :=maw T; == INNER will activete ¢ new instance of T
g'.: edT;

begin

r , aull; - - the tesk INNER is now ectiveted (during the

. ond PACK; - - elaboration of the body of the peckege PACK )
i" tesk bodyTis ... endT; - - then the initial specification of T is completed
ET" in this example it happens thet o task INNER, which hes visibility of en incomplete specification
3 (T), proceeds in parellel with the elaboretion of the rest of the declarstive pert. When the tesk
‘,‘,. INNER activates the instence REF .11 of T, if the body of T hes not been slready elaboreted then s

PROGRAM ERROR exception should be rsised, otherwise the tesk eoctivetion proceeds
successfully. This is an evident example thet, when the tesk T is defined (or even gctiveted) (in
our case INNER), it connot receive o copy of the existing environment, becouse this
environment mey still be updeted.

mr T

Ingensrel, neme resolution (see the Overview) is not sufficient to uniquely identify the ectue!
entity denoted from en identifier ot o certein point of the execution. This is o direct consequence
of the existence of recursive subprogrems, of subprogrems shered smong tssks end of tesk

L=
L
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types (each one of the three cases would be enough). So we need some other kind of dynemic
informetion inorder to identify, ot o given point of execution, the correct entity essocieted to an
identifier ( we shell call “environment-selector™ this information). We can observe thet for
sequential 1angueges, in which we are able to pess to each construct its proper environment, the -

»
i
va

- -

n"'.
:3« structure of the environment itself can be s simple mepping from identifiers to denotstions. In v
our case the environment is unique and shared; consequently it is more complex, for example it -
E mey heve the form of o mapping: -
v, -
K (Tecal-enviroament-selector x fdentifier) --> demstation. 5
kY We can observe how, in our case, the local-environment-selector plays the same role of the
.~ environment for sequentisl lengueges (s3 velue psssed from e construct to snother modelling -
4 fn on sbstract way the present stsck) . During the elsborstion of esch construct, the present &t
-~ local-environment-selector should indeed record the position, in the “cactus steck like® v
2 structure of the globsl environment, corresponding to the present snvironment . -
‘ - we do not discuss deteils about the structure of denotations in the environment, becsuse it this is
sti}] metter of more deteiled modelling. N
g. 3.2 Memery Strectere -
ﬁ: PN
y We recall thet even in this csse we should not give & particular implementstion with o structure )
- o8 “cactus stack® or “heap” but rether we should try to specify in en ebstrect way the o
N requirements over the structure of the storege. .
Inour mode] we suppose thet the memory is 8 unique, globel snd shersd structure, contsining el
- the sssocistions between objects end their values.
~ -
. In o different model of memory we might represent ss globe! only the part of the memory -
explicitly shered between several tasks, still representing es locel informetion of & subsystem nd
: the locel pert of the memory of & sequential tesk. We do not 11ke this solution beceuse in Ade it is N
- not essy to distinguish between the locel and the shared pert of the memory of o tesk (which N
E remeins locs! until some fnner tasks sre sctivated). a
o The memory description, s {t sppesrs from the manual, t is not very abstrect beceuss often it i
é refers to implementation dependent sspects of the lenguege. ,:
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o

! Moreover o reslly complete definition of Ade should not evoid to describe (st lesst some of ) -
> these implementetion dependent festures of Ads  (for exemple the ‘SIZE ettributes or the f‘_‘_
f" STORAGE_ERROR exception) though the description of these festures should be done without sny N
! loss of ebstraction, for example by mesns of o peremeterized specificstion. Al these { \
implementation dependent sspects might be introduced in fact 63 paremeterized sspects within s : 'j
E‘; unique store specification (ss ADT). )'_::
. 003
gf. As for the overall structure of this storege model, it should be seen essentiolly &3 o mepping *';'.
] from L_Yalues (Objects ) to R_Yslues (Yelues)(ss in the stenderd cese). As inAde objects and am
o values can be composite, we can heve thet both R_velues snd R_Yelues mey be complex (for ol
example in the case of array); in this case we should be able to get the L_Yelue of a component 3
o from the L_Yel ue of the whole object (and the ssme for the Yalues). o
& The correct correspondence between L_Yelues and R_Yelues might be stated by formulss within &
.. the storage specification, steting for example thst the ath component of & R_Yslues
I (corresponding to sn srray value) of o L_Yelue L should be equal 1o the R_Yalue of the oM =
component of L; ie. if A is o Left-Yelue corresponding to en errey, R the “Rigth-Yelue® f-":j_

i function (which given o L_Yelue and & memory state returns the corresponding R_Yalue) end | =2
‘ eRigth-Yelue (R(A m)) (1) = R(A(I)m) . el
B This issue hes been trested in & more complete way in o separete report [ Reggio 85). _ :-
B In en even more sbstrect model we could evoid to introduce explicitly L_Yelues, directly e
" representing denotstions es structured “complex™ R_Yelues in the environment, tresting in en :_:-..
- exiomatic wsy problems sbout renaming end subcomponents.  This lsst solution, even if
i5: fessible, seems too much abstrect with respect to the Ade menuel (in which objects ere o

i mentioned explicitly). s
B Y
o 3.3 Other Informetion ' 'E\

’E}f As olready seid the infor metion sbout o tesk needed by more then one tesk, which cannot be >

" obteined with & synchronized sction, should be represented s glodel.
i R
The infor mation about tesk dependences is just en importent exemple. It might be represented :-Z;::.

ﬁ sbstrectiy es ¢ reletion between mesters. This infor mation should be globel fn order to mode! in Y2
o simple wey stetement like sbort T, or other dependence driven (synchronized) sctions (e.9. o
E termination). 1';:
e

! State attributes of o tesk, like “octiveted”, “termineted™, “terminetable™ and so on, should de =
B-35 =
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Qlobal being obviously updeted from the directly implied task (octivetion, terminetion), but -

8lso used by the creator {which is not necessarily the mester) task (inorder to verify the .
terminstion of the activation of the crested tesks), or used by other tssks ( rendezvous,

ter minetion, ebort etc. ). =

e

All the infor mation sbout queves end entries {e.9. for the representation of conditionsl entry "3-'

calls) should be globel too.

£

A compete definition of these structures can only be completed during the formal definition, and »2

is out of the scope of this report
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4.0 THE ATOMIC ACTIONS PROBLEMS

A formel definition of the concept of “etomic ection” of o tesk cen be given only in the fremework
of ¢ fully methemetical model. ti'wover with reference to o model besed on labelled transition
system, we con think of sn stomic action first es s labelled transition s.t. the inlermediete states
ere not observable and hence not relevent to the overall semantics of s program.

On the contrary the beginning and the end of an stomic action merk the ststes in which s tesk can
interect with the system, interfering snd/or being interfered.

The prodblem in Ads is that the beginning and the end of an stomic action sre not given simply by
the various synchronizetion points or by the beginning and the end of ¢ concurrent sction. Due
to the possidility of abortion, the csse of shared verisbles and the obvious fect thet the
eveluation of expressions can involve the execution of subprogrems end tssks, even meny
spparently sequentiel ections heve to be split in more elementery actions in order to hendle
properly the concurrent interaction smong tesks.

A second, now methodologicel raqhi rement over the stomic actions is thet their length should not
be longer than the execution of o single Ads ststement (or decleration), provided thet we are
interested in o syntax directed style in the description of the sementics of the lenguege.

But in genersl we heve thet the effects of en Ade stetement are too complex for being considered
o3 stomic end should be specified agein o3 & set of possible sequences of stomic ections.

Even looking ot the menue! we can observe thet the effects of o statement (or decleration) ere in
geners) descrided by e sequence of smeller ections; this is obvious in the csse of compound
statements, but in general it happens so for “terminel” statements (and declarstions) too (eg.
sssignment, sbort, exit, ... ).

For example, in the case of an sssignment, we heve to eveluate sn expression and ¢ neme in
order to proceed with the update, ond both the eveluations mey involve (by means of function
calls) on unlimited smount of activity. Then it seems ressonsbdle, still from s methodological
point of view, to follow the style of the menuel in the description of the effects of o conatruct
(decomposing stetements and declarstions fn smeller pieces), ot least yntil tMs description is

driven by the syptectic structuyre of the construct.

On this ground, in the end stomic ections should not be longer then the sleboretion of o
“terminel” construct (e.g. nemes, litersls, besic operstors,.... ).
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Obviously, we still have to verify thet it is correct to mode! such elaborations stomically, end
for doing this we need to state some kind of requirements over the observable beheviour of these
elaborations.

Whet we require from such elaborations, in order to be sllowed to be considered stomic actions,
is thet they should not have observsble “intermediate states™ (in the sense that their
intermediste stetes should not influence the behsviour of the rest of the sysiem nor should be
influenced by it). Non-stomic elaborations should be split egain, until stomic ections sre
found.

Ye can observe thet in some coses the mentioned eloboretions ere still too complex for being
modelled os stomic. Indeed the concrete syntax of Ads sometimes hides long sequences of
elaborations possibly heving the same complexity of the whole program.

With our requirements, spert from some “hiding" constructs, most of the elaborstions
corresponding o “terminel” constructs, seems to_be otomic. In fect the grenulerity of these
sctions already solves the problems of synchronization points or concurrent interactions.

The possibility of becoming sbnormel, snd hence completed premsturely, might influence the
stomicity of en sction; however though en ebort stetement con interrupt the execution of en
action, it should not meke observsble the “inter mediste states” of the sction itself.

An interesting exsmple of interference of the sbort stetement with sn stomic action is illustrated
by the update ection. Indeed when & tesk becomes completed while updsting & varisble, it is
specified from the meanuel thet the velue of the variable becomes “undefined”. This explicit
remerk of the menuel allows us to consider ss stomic the updste ection (even in the csse of
updetes of structured verisbles like arrays), becsuse the effects of the interaction of this
sction with the rest of the system still does not depend on the set of the intermediste states
reached by the action itself (even if it depends on the beheviour of the rest of the system) (the
situstion would heve been completely different if some “partisl updete™ might heve occurred).

The situstion is not so clear for many other actions ; for example it is not clesr whet might
heppen if an sbort stetement is itself premeturely sbondoned because of enother sbort stetement
(might only e subset of the required tesks to become ebnorme!? ).

Another issue is thet some of these elaborations corresponding to “ter minel constructs” might in
generel not be observeble (for exemple the eveluetion of & single name) ond might be “pecked”
with other ections.

3-32
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S.0 OTHER ISSUES
S.1 Explicit Time

A complete definition of Ade should describe oll the time-dependent festures of the lsnguage.
These features are related to the existence of s predefined "CALENDAR™ peckege, and to the
existence of explicitly timed stetements.

Some more sophisticated problems sre related to the duration of other (not explicitly timed )
statements.

The CALENDAR peckege provides o CLOCK function returning the actuel velue of the time (see
LRM 9.6 (7) ); obviously this is an implementation dependent festure snd should be trested in
8 perametric wey.

It seems ressonable thet subsequent invocations of this function return increasing velues of
time; but this is not explicitly steted in the LRM.

Our approech csn sccomodete any of the officisl interpretation that con be taken in some future.

The effect of ¢ single delsy statement can be observable within e program, es it is illustreted by
the following progrem fregment.

t s CLOCK;
delayg (n);
newt ;= CLOCK;

the value of newt should be ot least t+n .

e must note thet in the CALENDAR peckege appropriste “+° end “<* fyunctions sre defined,
ellowing to sum & TIME velue (returned from the CLOCK function) with & DURATION vslue

(possibly used s psrameter in o delay statement) and ellowing to compsre two different TIME
values.

Anslogously the effect of o deloy alternative within o timed sccept stetement is observeble, &s it
fs illustrated by the following program fregment:
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{:=CLOCK;
select
eccept t
or delay (n); t' :=CLOCK;
end select;

the velue of t', if the delay elternative is execuled, should be ot lesst t+n .

Nevertheless we are sware thet this is 8 perticulsr interpretation of the menuel, which reslly
ssys nothing sbout the sementics of time; note however thet the eabove interpretation is
supported by the existence of some ACYC tests checking for the verification of the illustreted
properties.

We believe thet & formel trestement of the timed constructs should iske into sccount these
intuitive properties, for exomple modellirg explicitly the current value of time.

S.2 Parallelism

We must observe thet the LRM clesrly stetes thet en implementation is ellowed to perform
contemporaneously any group of eligible { nonexclusive) sctions ( 9.0 (2) ).

Moreover it is said thet the durstion (relative speed) of the sctions is not specified { 1.1.1
(12) ).

Thus if it was not for the presence of constructs with an explicit reference to the priority
festure, we can model & parailel execution by ellowing, ot each execution state of the system, any
group of eligible actions to be performed in parellel. in s SMoLCS model this is dealt with by
defining & free- pareliel monitoring (see [Astesianc et al. 85 b] for en example ).

Introducing priorities implies thet st monitoring level we heve some monitoring infor mation
related to tesk priorities and thet perallelism is free except that for priority constraints.

However the only constraint thet the languege seems to stete is relsted to the beheviour of o
selective eccept statement, when tesks with different priorities ere queued (and hence eligible
for exevution if the corresponding entry is sccepted) on different open entries.

\."- -
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S.3 /mplementation Depeadent Aspects

The implementation dependent aspects of Ads are of very different kinds.

Some of them ere not explicitly implementation dependent features, in the sense thet en
implementation is not required to give sn sccurete description of them in some “sppendix” of the
menus!, and sre treated in the language s explicit forms of non-determinism (which sn
implementation is allowed to restrict, but which ¢ prograsm is not sllowed to test). Notorious
exemples of this kind of "implementstion dependent™ sspects are the orders of elaborstion of
some constructs, the techniques for psrameter passing, end %0 on. In these cases, even if an
implementstion is sllowed to restrict the sliowed non-determinism, o formel specification could
not avoid to describe a1l the possible slternatives.

A similer example of the sbove mentioned nondetermism of the lsnguage is releted to the
concurrent sspects; each implementation can provide 8 particulsr scheduler, monitoring in its
own way the relative speeds of tesks, and competitions in rendezvous. In this case 8 program is
sble to detect the implementstion choices ( ot least in part), even if o formel specification could
not avoid to describe sil the possible slternstives in order to define the correctness or the
uncorrectness of a program.

A completely different kind of impiementation dependent sspects of the languege are, on the
converse, those sspects which should be explicitly described and fixed in some appendix. For
example the definition of the type PRIORITY, DURATION, the velues MEMORY_SIZE, MAXINT, the
set of predefined numeric types, and so on. These sspects perhaps should be trested in s
perometric wey in the formel definition, beceuse their non-determinism is not dynemic but
fixed "o priori-.

Another very different kind of implementation dependent features is related to the use of
low-level focilities of Ade , ¢.9. essocistion of entries with externel interrupts, use of mechine
code insertion, mepping of objects st explicit ADDRESS velues ond so on. ( [t is not syre thet
this sspects should be modelled , and how ). These sspects are not very interesting to be modelled
fn the for mel definition.

A more precise report on these issues (including 170 problems) is stil) in preperstion (see
[Fentechi etol. ] for more details).

AN
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6.0 CONCLUSION

The motivetions of the choice of & model have been illustrated. In particuler the sdventeges of o
Nt (single level ) structure sre explained.

Some hints on the trestement of timed constructs and other implementation dependent sspects of
Ade heve been given.
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FORMAL SPECIFICATION AND DEVELOPMINT OF AN Ada* COMPILER

= A VDM CASE STUDY

Geert B. Clemmensen and Ole N. Oest

Dansk Datamatik Center
DK-2800 Lyngby
Derrmark

ABSTRACT

The Vienna Development Method (VDM) has been
eployed by Dansk Datamatik Center (DDC) on a
Jarge-scale, industrial Ada compiler develcpment
project. VDM is a formal specification and devel-
opment method in that it insists on the initial
specifications and all design steps being express-
ed in & formal (mathematically based) notation.

‘This paper gives an overview of how VDM was used
in the various steps of the DDC Ada project, and
we gquide the reader through the steps involved
from the initial formal specification of Ada down
to the actually coded multipass compiler. Finally
we report on the quantitative and qualitative
experiences we have gained, both as regards the
technical suitability of VDM for the project and
as regards the implications on software management
and quality assurance.

1. Introduction

This section gives an overview of the Vienna
Development Method (VDM) including its application
in campiler development (subsection 1.1) and of the
DOC Ada Corpiler Project (subsectian 1.2). Then
section 2 describes how VIM was actually erployed
on the IOC Ada project taking into account the

cal restrictions, same stemming from the
kind of host and camputers, others sterming
fram the changing environment (three Ada Language
Reference Manuals were issued during the project).

Section 3 exanplifies the application of VDM in
the development of the code generator, and finally
section 4 reports on the experiences gained with
VM.

1.1 The Vienna Development Method

The Viemna Development Method wes initially
developed at the IBM Laboratory at Vienna in the
early 1970's for the purpose of the definition of
a large subset of PL/I [1], and the subsequent
development of the corresponding campiler. VIM is
based on the approach of denctational semantics,
and should not be confused with the earlier work

¥) Ada Is & registered trademark of the U.S.
Goverrrment, Ada Joint Program Office

of the 1BM Vienna Group, namely the specification
language VDL, in which PL/I1 was specified in the
late 1960's, and vhich relies on operationa)
semantics. VDM uses a metalanguage known as
*META-IV" [2] based on sugared lambda calculus (4]
and ScottStrachey domain theory [15). But VIM is
more than just a meta-language: a number of qeneral
approaches developed elsewhere has been incorpor-
ated into VIV, most notably stepwise refinement

of functions as wel) as of data objects. VDM
further contains a number of specialized
approaches: in the area of programming language
definition and campiler develcopment VDM offers a
specific set of guidelines thought of as a
"cookbook” prescription for the work to be carried
out [3]. As a part of reporting on our experiences,
this paper explains which deviations fram the
"cookbook" we had to make, and why.

Generally software development proceeds as follows
vhen using VIM:

A specification of the software to be developed
is given in the form of a model, that is as
operations (functions) on cbjects representing
the input to and the internal state of the
software, and yielding cbjects corresponding to
the output and the changed internal state. The
model is formal in the sense that it is expressed
entirely in the meta-language, and it is abstract
in the sense that it is free from details
concerning the eventual implementation (functions
are often defined implicitely rather than via an
algorithm, and the actual representation of the
objects is not considered at all. Objects can be
abstract (e.g. recursively defined sets and
mappings) with no counterpart in the implementa-
tion language). Classes of the cbjects involved
(damains) are explicitly defined by so—called
domain equations ra than implicitly defined
(e.g. by axiams).

Then a series of more and more concrete specifi-
cations (called "designs”) are worked out. Each
design is derived fram the preceding, more
abstract specification in that either the objects,
or the cgperations, or both are "refined” into
corresponding ob and gperations more close
to the final inmplementation. All specifications
are expresseld in the meta-language, and the more
concrete they became the nore implementation
details will be dealt with. Ideally the derjvation
of a more concrete specification is done formally
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by writing functions that “generates” the lower
Jeve)] objects, or by writing the so-called
retrieve functions which, given the ohjects of a
certain leve), “retrieves” the corresponding
objects of the higher Jeve). It must then ~ in
either case - based on these functions, be proved
Or argued that the derivation of the rations
are correct. In practice, 8 Jess formal transfor-
mation from one level to the next takes place,
cf. section 3, and as generally discussed in [12].
In certain application areas overall guidelines
exist for the derivation of designs: however,
rost of the derivations one has to carry out are
based on experience and skill. As regards the
transformetion of objects (e.g. mappings into
tadbles), verious standard exavples exist. Refer

3.
VI¥ in corpiler development proceeds as follows 3

The departure point is a8 forma) definition
preferably in the denctationa) semantics style of
the Janguage to be conpiled. The use of a formal
Gefinition of Ads as the basis for compiler
construction is also advocated in [7). Such a
definition has three canponents in the case of
Ada 1 A definition of the static semantics (SS),
® definition of the dynamic semantics of the
sequential constructs (DSS) and a description of
the dynamic semantics of the parallel (tasking)
canstrocts (DST).

The static semantics takes as "input” an Ada
carpilation unit represented in an abstract

syntax AS1. The 5S checks the corrrectness of the
wnit, and trangforms it into another abstract
syntax, AS2. In AS2 all information vhich is only
relevant far the static semntics has been remved.

The formulae of the dynamic semantics assigns
“eaning” to the compilation unit represented

AS2 cbjects. -

AS]1 and AS2 are based on an abstraction of the
concrete syntax of the language being defined, as
:;. c%;gjﬂu DIND intermediate language for

The front en? cowpiler is derived from the static
samantics, and the back end corpiler (code genera-
tor) is derived from the @ynamic semantics for the
ssquential constructs. The dynamic semantics for
tasking constitutes the departure point for the
tasking kemmel in the nn time system.

AS] and AS2 wil] thus have their counterparts as
intermsdiste Janguages in the cotpiler implementa-
tion. As the 55 and DES specifications will have
:o be lpu:‘m several passes, wore intermediate
anguages will emerge Auring the design process.

The specifioation of the angc mﬁg is culled
8 cpiling adgorithm (CA), as it shows which
eode to gunerate for each construct in Ada (AS2).

J6eally & mcro expansion step between the IBS
and CA should be taken :+ The macTo step gensrates

‘mets-language” rather than actual code, a~d
allows for experiments with the actual run tire
system administration tefore details of the
actua) cofle is considered.

1.2 The IIC Ads Comiler Prosdect

Dansk Detamatik Center (DDC) is involved in the
develomment of an Ads cotpiler as » part of the
Portable Ada Programming System (PAPS) prosect.
The PAPS project is being carried out by Olivetti,
Italy, Dansk Datamatik Center and Christian
Rovsing A/S, Dermmark, and will result in a progra~
ming environment initially hosted on and targeted
for two 16 bit mini-computers, namely the Olivesti
M40 and the Christian Rovsing CRBO. The project
includes a kernel operating system for Ada,
various tools, an Ada corpiler, and 8 hiah level
machine for Ada. The project is partially funded
by the European Counmity.

The host and target computers in question have
imposed a murber of restrictions an the project,
the nmost severe deing that the corpiler should
£it within 80 K bytes of code and 110 K bytes of
data space. This has influenced the design of the
carpiler considerably: A multi-pass corpilation
technigque has been chosen, with a total of 8
passes, and the tree-structured intermediate texts
are linearized and scanned sequentially by each
pass. The caplete trees are thus not residing in
internal merory: the syntol table, however, is
placed in a software paged mwrory, administered
by the canpiler itself.

This design had some implications on the wey VIM
could be used on the project.

2. DPrloyment of VIM an the IIX Ada Protect

The goal of the DIC Ada project is the developrent
of a portable Ma cotpiler written in (a subset

of) Ada ftself. Hance, » bootstrap tool is
required. This too), which is 8 source to scurce
translator mepping Ada onto & medium leve) language
SWELL, wvas also developed using VDM. This tool,
clled RLC-Ma (Source language Conversion of Ada),
was irplerented in Pascal.

The two parts of the project, the deweloprent of

SlC-Ads and of the Ada compiler, are treated

:‘qnntcly. as they have quite different characte-
stics:

The development of the SIC-Ada translator could be
considered as an intermal effort of modest size.
Little interaction with groups cutside the IXC
was necessary and the Ada subeet chosen was
stable during (and to a Jarge extent after) the
developrent phase 30 this sub-project could be

managed with it le effort and it could be carried
out by a smal) group of 3 to 4 persons. This
simplified the internal communication in the
group. The sub-project vas earried out in a
little less than one year calendar time.
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The development of the Ada compiler, however, was
a large scale effort inwolving 10 to 14 persons
over » three year period, and inwolving interna-
tional cooperation on interfaces within the
campiler as well as between the compiler and the
environment . Further the Ada language fluctuated
quite heavily during the project period (probably
wore from a campiler writers point of view than
as seen fram the average user of Ada). Not only
did we see three issuves of the Ada reference
manual during the project, but we also saw
inbetween these issues various ~ mutually and
intermally inconsistent ~ interpretations of the
Ada reference manual (the Softech Implementor's
guide, the Ada Question/Answer mechanism on the
ARPA-net). This influenced the project to a large
extent, and implied a rather pragmatic use of
VIM, as the goal of the project was to came out
with an up~to-date campiler, rather than to
maintain a coherent set of formulae through all
development steps. On the other hand, the
obligations to the "outside world" required that
a high anl consistent level of documentation had
to be maintained. Thus a careful balance had to
be made.

It should be mentioned here that we had no tools
available to support the development of the
forma) specifications, to check their consistence
or to help in the refinement steps. VDM was (and
still is) a paper and pencil method although
steps are being taken now to develop support
tools. :

SLC-Ada

The subset was chosen according to experience
with earlier program and compiler development.
The quiding factors were:

1) the Ada subset was toO be used as implementa-
tion language for a 100.000 lines project,

2) straightforward implementability of the
selected features. .

The static semantics of the subset was described
in META-IV, and the dynamic semantics was
described by giving a compiling algorithr mapping
the subset into SWELL. As a parallel effort
outgide the PAPS project a formal description
(static and dynamic semantics) of SWELL was worked
out. The formal description of the subset was
intended to form the farma) specification of the
campiler and was hence written with same thoughts
about implenentation issuves.

The translator was coded by a rather direct,
manual transformation or rewriting of the static
semantics and the campiling algorithm in Pascal.
This resulted (in addition to the scanner/parser)
in one pass handling the static semantjcs, and
ane pass perfarming the source translation. Due
to remory restrictions it Jater became necessary
to split the static semantics pass into three

B-979
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separate passes. This was done without introducing
different intermedijate languages. Al)) passes
{except the scanner/parser) work on the same
intermediate language (and repeats certain
operations). The mechanisms for the separate
compilation, the scanner/parser, the run time
system and the Ada linker were developed by
traditional means.

2.2 ‘The Ada Cowpiler

The development proceeded in this case through
four steps:

1: Development of a formal specification of Ada.
The static semantics and the sequential part
of the dynamic semantics are specified in the
denctational semantics style, whereas tasking
is specified by an operational medel [8],
{91, [10], {11].

2: Development of a formal specification of the
cawpiler parts. :

3: Development of a more detailed formal specifi-
cation of certain campiler components and
passes .

4: The Ada program structure is decided upon:
the specifications are broken into Ada
packages, and implemented in Ada.

Application of steps 2 and 3 to tha Zrcnt end
campiler involved:

step 2:

- {dentifying items governing the arcup o, of
static checks (dependence on camlezcuess of
symbol table contents, on degre: o7 Over-
loading resolution, on evaluatichn f s=ztic
expressions etc.),

- classification of the static checks (base »

the formal specification of Ada and on the
items jdentified above),

- distributing the static checks to the passes
based on a topological sorting of the checks,

- formal specification of the passes and
intermediate languages,

= defining the intermediate languages between
the passes of the front end,

- specifying for each pass the transfom;ion
from the input intermediate language to the
output intermediate language,

- specifying a symbol tadble handler.
step 3:
= for same parts derivation of a more implementa-

tion arjented specification: for the remaining
parts the formulae of step 2 apply.

. -, e e et e T T T e et T Nt e e aN e T e T
o . \'-.A. _‘-.\- . a N o _‘-“-1 \q.\- \-\\- ,‘-.\i\. TSN .‘.‘-_.. oy CY
] N h

.‘_l'-"-."' s

04y e b
B

b

D
E N

"
¢’
RO

oy,

1
»

s

MR SRS
el e
o ‘4 A..c + _Q','

‘o
P
L
N
§

.I .l

[y
3 a0 b

7
[
s

r
’A

g o R )

AR
. A
‘, 2

N

8y %,
.

LR

‘l

3
,
o
PR}

N 4 ¢
7%
a

K
. v
»
-

¥
A




a2 "e . s TV a -

The static semantics part of the formal descrip-
tion of Ada has some resetblance wit' a one pass
corpiler. No forma) methods exist to derive 8
specification of 8 multi-pass comiler front end
from such a definition. However, by ewloying
systemacy as described under step 2, we obtained
8 corpiler front end specification vhich tumed
out to be of a very high standard: It contained
rather few errors, and they were all easy to
correct. MHowever, as step 1 (and Jater 2) became
cbsolete with the new issues of the Ada languaae
reference manual, the specification of step 3 was
updated, proof-read and compared directly with
the text of the new manual . For each formula in
the specification, the corresponding test of the
manual was marked with the nurber of the compiler
pass, which handled that text. Finally it was
checked that a)] of the manual had been marked
up., and necessary changes to the formulae were
carried out.

Application of steps 2 and 3 to the back end
compiler involved:

step 2:

- formal specification of an “overall” compiling
aloorithm mepping the output of the front emd
directly into the A—code instruction set of
the high leve) target machine [6]. Note, that
the intermediate language between the front
end and the back end stens fram AS2: hence it
had only to be refined in steps 2 and 3, not to
be defined.

step 3:

= based upon this: decision on intermediate
lanquage levels and structure,

forma) specification of the resulting three
beck end passes and two intermadiate languages.

back end developrent is examplified in section
The specifications of step 2 above is based
ep 1 and the informally described changes of
., vhich tock place during the development of
step 2. Stap 3 wvas developed in 8 similar way.
Only the step 3 definitions are maintained up to
date with respect to the cwrent Ada definition.

The .énrncr/p-rnr and the separate carpilation
handler were developed using traditionsl methods.

In order to obtain intermediste milestones, four
implementation levels were defined whers each
leve] implerents more and more of Ada. This
division into levels wvas done based on the formal
specification, and largely only after the
development of all of the specifications. Each
leve]l has been tested thoroughly, both by the
original developers and by an independent group.
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3. A VDM Exercise

As described elsewhere in this peper, VDV is
based on an §nitisl formal specification onto

which 8 sequence of refinement steps are applied
in order to reach the fina) implementation. 1n
this section, the resder is guided more or less
informally through an exercise in VIV by showing
how the dynamic ssmantics of a specific Ma
construct is specified, refined and implemented
(in a subset of Ada).

To introduce some of the terms used in the fol-
lowing, the comwpiler structure is shown :

Ada -» Pront Pd - IMg => Back End ->» A-code
Within the back end the following structure exists:
IMg->Pass 6->IML7~>Pass 7->M-code->Pass 8->A-code

IMg is a tree structured intermediate language
which is camparable to DIANA [13) in level, but
corpacted and simplified. IM., is also 8 tree
structured intermediate language, but is aimed at
code generation for any class of target machine.
A-code is the code for a virtual stack machine
called the A-machine [6). Abstract A-code
(AM\~code) is 8 suitable abstraction of A-code
vhich esases the code generatjon, that takes place
in pass 7, and makes it possible to choose sTong
different implementations of the A-machine.

The Ads construct used as an exxrple is the
object declaration [14 section 3.2] :

objeet declaration ::=
identifier list : [eonstant) subtype indication
[:# expression]

subtype_indication ::= type mark {eonstraint )

As mantioned earlier. the forma) specification of
Ads has two main carponents, namely the Static
and Dynamic Bemantics. An abstract syntax of Ada,
called AS1l, forms the input to the Static Seman-
tics which also containe ~ transformer producing
the adstract syntax of the Dynamic Semantics.
called AS2. In AS2 the construct is modelled as
follows s

Object-del :: Var-id-set [CNST) Subtype-de! [Ezpr)
Varid :: JOKEN -
Subtype-def :: Type-mark [Constr)

Notice how close the Samain specification is to
the original Ada symax given above.
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The elahoration of an Ubgect-del can now be
formally specified as :

elab-0Object-del(declleny =

let mk-Object-del(vide, enet, st~def, texpriadecl in
T {de] st : elab-Subtype-def(st-def)env; -
“lenst = CNST ->
elal-Const-del(vids, st, texpr)env,
r -
elab-Var-del(vids, 8t,icxprienv))

tipe: Object-del -> (ENV => ENV)
gre: The elaboratjon of the subtype definition
has no side effects

elal-Var-del(vids, st, iexprieny =

(def varenv : get-vardens(vide,st)eny;
Tiezpr = nil -»
for all vid ¢ vide do
T Tde] ival : get-init-VAL(&t)(CREATE)env;
assign(s-Varloc(varenv(vid) ), Tval]/);
return(warenv)),

r -
Jor all vid ¢ vide do
~de] twal : eval-EZpr(iexpr)(envsvareny);
#udtype-check(ival,st)env;
assign(s-Varloc({varenv(vid)),ivall);
return(varenv)))

type: Var-id-set Subtype-den [Ezpr]) -> (ENV => ENV)

The elaboration of an Object-del consists of
elaboration of the subtype definition (yielding a
so—called subtype denotation) and a new local
envirarment (elab-Const-del or elab-Var-del) in
which the cbjects are introduced.

The elaboration of a Var-del consists of creation
of a local enviromment in which the objects are
introduced and the evaluation and assigrmment of
either implicit or explicit initialization
expressions.

One important issue of the specification given
above is that all kinds of objects (arrays, tasks,
simple) are treated uniformly which campacts the
specification and eases the reading considerably.

When the formal specification fram the Dynamic
Semantics is to be refined (including both damain
and operation refinaments) into a so-called comp-
iling algorithm (code generator) specification,

8 nurber of important issues must be addressed in
order to guide the refinemant process.

Exarples are :
= how to implement the various kinds of cbjects

- elimination of checks where possible
- optimization of repeated expression evaluation

In our implementation we have decided to
distinguish hewteen the following object kinds :

- array

record

task

access

remaining and simple cbjects

In the followina we will concentrate on the simple
objects. .

In order to get same hints on how to direct the
refinement and irplementation process it was
decided to work out an experimental refinerent
step, transforming AS2 directly to pseudo A-code.
This so-called compiling algorithm sketch res:lted
atong other things in the notion of predicates.
Predicates are truth values attached to the
varjous nodes of IMLy and they express certain

properties about the sons of the nodes (i.e. they
guide the code generation).

The actual refinement steps can now be given :

AS2 > IM¢g : This refinement step is a step in
the design process and is not implemented, it
merely consists of a concretization of AS? into
IMg. The step is called & damain refinement.

IMLg => IML; : In this refinement step the various
objects (also types, subprograms, operators etc.)
are classified into the appropriate kinds and
predicates are evaluated. Essentially this refi-
nement step is also a8 domain refinement, although
not normally covered by the term damain refinerent.
The step is implenented as pass 6.

IM -> Abstract A-code : In this refinement step
the high level tree structured intermedjate
language IM.5 is transformed to a linearized
sequence of Abstract A-code instructions. This
step is the operation refinement step, and is
implenented as pass 7.

. Abstract A-code -> A-cade : This last refinement
step takes the Abstract A-code and produces the

final A-code. The step can be viewed as a post
darain refinement step which concretizes the
damains of the Abstract A-code.

Because of the rather wvoluminous specifications
of all the refinement steps, the previous exaple
will only be shown specified in the refinement
step IM) -> Abstract A-code.

In IM; the previous example is modelled as :

SimpleObjectDecl :: OBJECT-KIND Objldl
{SimpleConstr] [Ezpr)

OBJECT-XIND e ShortIntg | Intg |
LongTatgs | —£.
obj1di 22 len: DESCR-ADDR+
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Predscates :

SirpleConstwn-StaticEounds
Sim;. leComstmholosenheck
SimplelonstmNoUppem neck
SimpleConstn-NotNullRange

Ezpr-NoSidelffects
Ezprn-NoSubtypecheck
Expr=-NolowerCheck
Expr-NoUpperCheck

The Var-id-set of AS2 has now been converted to
® list of cbject jdentifiers which essentially is
8 list of symo) table references. Predicates,
expressing properties about the constraint and
the initislizatior. expression, are also evaluated
and made avajlable.

The elab-Van-dcl elabtoration procedure has now
become 8 so-called Carp ilin? Algoritrem formula and
is named C-Sirpledbjectdecl (shown below). Con-
stants are trezted no different than variables in
this implementation, but other implementations

may choose different refinement directions and
hence 8 different compiling algorithm and imple-
mentation.

It should be noted how close the compiling algorithm
formala is to elal-Object-del and elab-Vawr-del,

but it is also clear that the compiling algoritim
formula is more or Jess straightforward to implement
corpared to the eladoration formulas of the

&yramic semantics. The actual inmplementation of

the carpilino algorithm formula, in a subset of Ada,
is shown on the page following the formula.

0) C-SimpledbjestDecl(am,decl) =

L N S D T I I

Lzl a g w &t Ban e b e B dnd st Sl Rt Madl Al st

Sumvmarizing the steps involved :

1) A suitable high leve) sbstract syntax of Ada,
AS2, is defined and the dynamic semantics is
formally specified

2) AS2 is refined into IM, using so—called
domain refinements

3) The Dynamic Semantics is refined into a
Corpiling Algorithm using so—alled oreration
refinements

4) The Corpiling Algorithm §s inplerented

Ridirentary annotations to the forrula :

05-10 : If a constraint is given it is coreiled
and storage is claimed and associated to the
symbo]l table handle ta. The evaluated predicates

are fetched and used for generating the optimal
code for the constraint.

12-16 : 1f no initialization expression is given,
storage is allocated and the associated addresses
are stored in the symbol table (via the DESCA-All3s).
1f storage allocation is to be done by pushes, the

stack pointer is incremented resulting in undefined
initialization values.

18-36 : The storage address of the constraint
descriptor is extracted from the syrbol tadle and
the initialization expression is evaluated the
required number of times and checked against the
constraint before assigned.

02 le: mk-SimplcObjcc:Dccl{objkind.objidl,ocmtr,oc:pr} = decl in
03 Tet mk-0bjldl(len,dal) = obidl in -

0¢  Ist %a « 8-TYPE-ADDR(dall1]) in™

05 {oconstr ¢ nil wm>

06 C-Simplelonstr(am, oconstr, ta, objkind,

07 Simplelonstn-StatieBounds (decl),
08 SimpleConstn-NotNullRange(decl),
08 SimplelonstwNoloverCheck (decl),
10 SimpleConstw-NolUpperCheck(decl)))
b} °

12 {oexpr = nil -»

13 { 16t st-addr = get-obj-addriobjkind) in

14 . T insert-obj-addr(dallil,st-addr) |T <1 <lem
25 * =

26 (am = IMMEDIATE em> Alloc on stack(len * sizelodbjkind})),
17 T = -7

18 let ea » ertract-constr-addr(ta) in

19 (Expr-NoSideEffect(decl) -»

20 C-Ezpr(oexpr, objkind)

21 “

22 { Expr-NoSubtypelheck(decl) em>

23 Check_range(objkind, ea))

a4 -

25 C-AssignInitEspriam, len,dal, objkind),

" r -)

a7 ¢ C-Expr(oezpr, odjkind)

28 ®

29 ( Lzpr-NoSubtypeCheck(decl) mm>

30 Cheek _range(objkind, ca))

8 -
32 let st-addr = get-obj-addrlobikind) in
23 T tnserteobj-addr(dalls), eteaddr)
3 °
35 fam « DEPERRED w>
gg “Poplobjxind, st-addr)) | 1 i <lm )

§6 type: AllocNode SimpleObjectDesl wm> Ad-eods
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! procedure (_Siepleldjectdec] 43
a®
Sinplalonstr _Ststic®ourcs : boclear s 1ml7_jet_vprec(1); by
Savplelonstr_“otNullRangas : boolerr :x awl? _cet_prao(2): o
L 3avpleConstr_NcloserChech : boolwar := 30l? set_prac(é); A\
§ Sirgleionstr_cLpzerlheck : boclesr 2% aml? 950t _orec(3d). .
Sagr_%oSidetffacts t boclaer = 1#]1? set _grec(it); o
Eagr_toludtypelreck : boclesr := im17 _set_prec(id); i
N oS k3nd  : TBIECT_xi'W t® in)7? _otlking; .
: r.€c? : oby_ceci_ocescr_ret 2 uc_otj_cac)l_descr(stn_geccres(aml? _o02.(1), £ .
' o3 : eo_cescr i® uc_ob _descr(sth_naccest{c_ovc.8lle13028cr, rl)).all; oIS
. ca : CozocCress: ¢l
t:_- i®)7_pes : iwl7_positicn; -
& begin
iml1?_in; _
> 11 1917 _next /= nil then .
. C_.S%irplelonstrier, cc.ot _tyre, ob king, Saeglalonser_Strtictouncs, -
.. : Samglefenstr_ihotNulifenge, Kt
tirglelonstr_‘olLowerCneck, e
- SascleConsir_AcLocer(hneck), “
o end 1if; :

112
Ty

i"17_set_recs(ae)l” _gos)?

irl?_an; = oexzr “
o :
r".- $1 1917 _next = nil then .
- get_ong_1nsert _cbdj_2odrs(odjking).’ KA
: 11 8C_ew = IVPICIATE then -
i e»it_cllar_3lloc_cn_stack, 3w)~_22]1 len ¢ siza_of(ozjking)),
end §f. N
else e
. ca s yc_sivele_type(sth_access(od.ot)_typa, rl)).all.constr_gadr; :
. o
- 1¢ Sapr_NoSiceEffects then .\,-‘
S_Exprlotiking); ~
- 11 not Exgr _NoSudtypelheck then o
. amit_cS(aa_Check_rgnje, ot kinc, ca); o
: ond 11; KR
. S C_AssignTtnitExpr{eb jking)’ v
-~ else - ~
= for 4 &n 1..4¢17_dal_len n‘;
loop -
] 11 1 > 1 then
o irl?_set_peslaml?_pcs); <.
" inl?_4n; S
‘ end 8¢’ T
. "3
o C_Eaprlcbjking)’ K
. $t not Expr_NoSudDtygeCleck then -
- emit_cSlan_Cleck _rarze, cbikind, co)?
ond 4f; .
') l‘.
vy P_0Cd :* uc_otJ _dec)_oescristh_sccess(inl? _cal(i), u))’ $
Yo get_od i _sacrlobdbikine, g _odd.8ll.0b’_asddr); .
. £0 4C_sr = TEFERIEC then :
enit_cS5(as_Pop, cdikind, p_ocd.all.otj_scor); 2%
ond 19
oend loep’ ol
end 4¢; KN
e ond 1. A
;.: ond C_Simglestiectlecl’ f_._
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4. Experience Gained

Section 4.] presents same quantitative observa-
tions as regards the BLC-Ada sub-project and the
mein Ads compiler project. Bection 4.2 contains
some technica) experience mostly concerning the
devistions fram "strict™ VDM, and section 4.)
contains our experience as seen fromn a software
management point of view.

4.1 Quantitative Observations

SLL-M8 Sub-Project

Companent Fformula Source Hours
lines lines

Scanner and Parser 3200 472

Btatic Semantics amd

Front End 1400 11500 1365

Compiling Algorithm and

Code Generator 1300 6700 1285

Misc. (Library System,

Linker, Run Time System,

Urilities) 8500 368

Anctiown] Test by OA Staff 3400 178

User Documentation 67

Total 2700 33300 3735

These £i s include the design of the Ada subset
and the lcgment of the folowing infarmel
docurents: Design Specification (44 pages), -
Informa) Program Specification (39 peges) and
User’s Guide (68 pages).

The initial estimate vas 1860 person hours. The
mjor reason for the overrun was that the
corplexity of the Ada subset was undersstimated.
Initially it vas considered to be of the
corplexity of Pascel.

Aas Compiler Project
Coponent Formula fource PMours
1lines lines

Static Semantics, Scarmer,
Parser and Front Bd

Oyramic Ssmntics,
Compiling Adgorithms and
Code Generstor

24000 35000 12400

20000 62000 9700

Component formula Source Hours
lines Jines

Separate Compilation

Handler, Multi Pass

Adninistrator, Supporting

Packages 42000 2700

Misc.(SLC-Ada, other

tools) 2700 66000 4220

User Documentation 400

Functional Test by OA

staff «+) 2000 950

Other QA Work 1R50

Overhead +) 1150
46700 230000 4370C

4) This includes: Management, meetings with
partners and other implerentors, conferences,
work in Ada Eurcpe on language review and
standardization, computer operation.

++) As the official Ada Corpiler Validation
Capability test suite was used we had only to
develop & few test programs.

The figures above include the developrent of the
following documents, totalling 1200 pages not

including the formilae: Requirements specification,
“fu:?.ic;nl specification, global design, detailed

o including intermediate } s and )|
table, cnem’l?y available !mm. tenm
reports. Purther s included feasibility studies
of interradiate languages used elsevhere, progress
meetings, review meetings. All figures are
approximate, as the project is not completed at
the time of writing.

The initial estimate was 32,000 perscn hours, and
that around 100,000 lines of code had to be

developed (excluding the S1C-Ada syster). The
reasons for the overnun hasn't been cowpletely
analyzed, but arong the reasons are: The Ada
language changed during the project, the
carplexity wvas higher than estimated, the
development tock place on new hardwvare and on a
pre-relesse of & new Operating system.

4.2 Technical §ence

This ualmMQnuusMwhdw
deviate from “strict” VDM. Nowever, it should be
noted that VDM users are tic rather than
dogratic, so that it is considered perfectly
acoeptable to adapt VIM to specific needs!

~ Transformation of one step into the next wvas
done systematicslly, Bt informally. No proofs
of correctness were given. It is not feasidble
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to carry out proofs of correctness without
tools which can aid the proofs: even with such
tools the task might turn out to be very large.

The formulae developed in the first two steps
were not maintained up to date with the
changing Ada language. Hence the camplete
line of docurentation from the forma)
description of Ada down to the implemented
capiler is lost. There are two major reasons
for this: (1) the lack of tools makes it
extrerely difficult to maintain forma) specifi-
cations of the size of the Ada project, and
(2) maintenance of the formal specification of
Ada is a major task in itself, taking the many
changes and (still unresolved) semantic
problems in Ada into account. In a compiler
one can take certain decisions as regards the
implementation of the semantics of Ada - this
cannot be done in a formal specification.

Development of a derivation step was based on
the forma) specification of the previous step
and the informal description of the changes
which had occurred to Ada in the meantime.

A macro-expansion step between the campiling
algorithm and the specification of the code
generator was omitted. The macro expansion
would have allowed for experiments with the
storage Jayout at run time and with the run
time administration. However, amission of the
step was (partly) justified with the fact,
that DOC was not directly involved in the
development of the A-machine.

4.3 Software Management Experience

Management of the project benefits, because
each project member knows how the work should
be done.

The project status is more transparent due to
the various intermediate milestones which have
to be formally specified. Progress can be
measured.

The implementation can be divided into levels,
or intermediate milestones, in a secure way
based on the formal specifications. There is no
risk that the resulting lower level subset
campilers cannot be extended tc full Ada, as
has been seen aon other projects.

Based on experience fram SiC-Ada and the formal
specifications of the campiler passes,
reascnably good estimates of the final program
size and resource requirsments can be made.
Howwver, it became evident that the experience
fram the earlier DOC CHILL compiler project
cld not be applied. This indicates that the
actual style and level of the formal specifi-
cations are rather persanal, in that they
depend on the authors. Fence the amount of
work in deriving implementations depends on

the individuals involved.

Mding staff with VDM experience to the proje=
poses no problems. Movina staff fro- one part
of the project to another poses no protle-s.
Such staff changes are feasible in the
specification phase as well as in the
implementation phase.

Adding staff in the implementation phase with
little or no VDM experience {but with an
introductory course to VDM) is not feasible.
In such cases the staff should participate
also in the specification phase, mainly for
the purpose of education and motivation.

Strict {rigorous) use of VDM is not feasible
on a project of this size and nature: partly
due to the size of the specifications and
programs, partly due to the chanqing reguire-
ments (here the changes of Ada). Meragerent
mist be able to deviate fram strict VDM by
giving in on formal derivations, on procfs/
arguments of the correctness of the derivation
steps, and by omitting certain derivation
steps (e.g. macro~expansion specification
between the compiling algorithm and the actual
code generator). The advantage of VDM thus
becomes that of enabling formal and precise
definitions of each step and the associated
interfaces. More rigorous derivations require
software tools (transformation processors,
proof and verification tools).

The development of a formal definition of Ada
as the first step gave a very valuable insight
into Ada, and it made it easy for the persoms
involved to ascertain the consequences of the
various changes of Ada for the campiler.
However, it is not possible to derive in any
formal way the gpecification of a multi-pass
campiler from the Ada specification.

Due to the camplete formal specifications,
reasonably final interface definitions (e.g.
intermediate languages) can be given at a
rather early stage. Hence, new staff metbers
can be added for parallel work without much
introduction.

Focusing entirely on the Ada language semantics
in the early phase hampered camunication with
other implementors who were more concerned
with implementation details of various specific
constructs. These implementors had still to
discover and understand the more fundamental
issuves and problems.

Development including management of formal
specifications of a size carparadble to that of
the formal definition of Ada is hardly possible
without the support of software tools (cross
checking formulae, cross-referencing).

Quite a large nuvber of trivial errors in the
specifications were not found until they were
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detected in the corresponding code. Such 5. Conclusion .
errors could be detected in an earlier staaze -_— i
by proper VDM-tools. Our overall conclusion is that the project couls MO
not have been carried out to the achieved leve) Oy
= Maintenance of Jarae formal specifications is of quality within the time frame availahle without -
not feasible without tools, unless the original the use of VDM. Camarisons with other methods o
developers are available for the maintenance. cannot presently be made due to lack of daza fror ; K
similar large-scale projects carried out with >
~ The lack of VDM tools makes production and similar formal methods. However, most, if not
maintenance of the documentation very all, other formally based methods are too riozrous bes "’
expensive. The SLC-Ada documentation has been to allow for practical use - hence (part of) the e
maintained only by marking the changes in pencil advantages we have qained fror VDM cannot ' :
in the original documents. However, this necessarily be proiected onto other methods as
approach is not satisfactory if the documents these will not be able to handle projects of the .
have to be used by persons other than the size and cotlexity of the DIX Ada project. A L
authors. discussion of various methods based on experience e
from smaller projects is available in [5]), whereas
- 1In the SIC-Ada case the static serantics VDt has been qiven a critical review in [12]. . e
specification proved a useful reference ol
document, which was frequently used to settle ~ s
quickly any debate about the contents and Y
meaning of the subset. §. References ) T
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DOCUMENT HISTORY

Version 0 of this document was very preliminary. It has not
been internally reviewed among the Ada FD project partici-
pants.

Version O was being externally distributed on a courtesy ba-
sis. It was not to be further distributed outside the pro-
ject partners. Receivers were kindly asked to submit com-
ments before 15 August 1985.

Version 0 was subject to a write-in internal review.
This internal review started 23 July and ended 15 August
1985.

Version 1 resulted from this write-in review. It is now
subject to a pre-external review: 23 August - 1 Sept 1985.

There will be. no external review of this deliverable.

Version 2 should result from this formal internal review.
It will then be submitted to the CEC, 9 Sept 1985.

The CEC will review this version 2 on 1 Oct 1985.

Further versions are expected to be produced throughout
the project life.

PROJECT SPONSOR

This report represents work which is fully funded by the CET
(Commission of the European Communities) under the Multi-Annual
Programme in the Field of Data Processing, Project No. 782: "The
Draft Formal Definition of ANSI/MIL-STD 1815A Ada".
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ABSTRACT

This document defines:

(a) Relevant Ada programming language issues,
(b) what is meant by a formal definition (FD),
{c) the various user groups of an Ada FD, and
(@) the uses these groups may have of such an FD.

From the extensional requirements (sects.2-3) that these users
expect an Ada FD to fulfil, and from the state-of-the-art of
formal definition techniques and methods (sect.4), we then de-
rive the basic intended characteristics of the particular Ada
FD to be constructed in this project, first ideally (sect.5),
then realistically (sect.6).

This document is to serve as part of the final, full documenta-
tion constituting the Ada FD.

The rdle of this document is twofold:

(I) To serve as a “"yardstick"” with which to “measure” the
conformance of the intermediate and final results of
on-going Ada FD project work w.r.t. the perceived
rdle of the Ada FD, and

(I11) as one of several kinds of introductions to the Ada FD
project.

The present, initial, version will differ slightly from a final
version in that it addresses mainly document rdle (I), whereas
the final version should address rdle (II).
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HOW TO READ THIS DOCUMENT.

Sections 5 and 6 contain the core of this report.
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s 0. PROJECT OVERVIEW N
": 'I:."
hyS

We briefly give a set of contextual facts concerning "The CEC o

.4‘

MAP Project: The Draft Formal Definition of ANSI/MIL-STD 1815A
Ada" henceforth referred to as the Ada FD project. For under- ::
standing the unpleasantly heavy use of mnemonics, please re- :“'
fer to Appendix A.

e

i
!: 0.1 Background .:::
a o
R
" The Ada programming language is described informally in the ;’.:
P so-called Language Reference Manual, LRM, also known as the :
. ANSI/MIL-STD 1815A standard. rY
Many Ada compilers (several academic and several industrial) ,Z:_:j'.
;:,". have been, or are being develcped, in USA and Europe (West and ::i:'
k& East) - world-wide. Many, including some commercial compilers,
. are labelled Ada, but compile subsets of, or extensions to Ada. tr':
" Ada appears to be destined for extensive use in educational, com- %::
T mercial, industrial, and military contexts. NN

-,
’

s

-
5| V-

There is an obvious need for an Ada standard with no deviations:

DS
-’_

. subsets, extensions, errors, or mis-interpretations. ey
2 o
) The US DoD was, from the very beginning, clearly aware of this. -\_
8 And the CEC quickly established industrial projects not only
aimed at producing European Ada compiler products and competen- -
ce, but also, on a brd&dcr scale, at acquiring deep and wide- ;;’,'-:
E’,".; spread insight into all aspects of Ada. Thus, the CEC, in ._
1980, established a number of very active so-~called "Ada Europe"
\ working groups. :
o The present project must be seen as an outgrowth from se- :
:.2 veral years of often deeply technical and theoretical discus- -
sions, especially in the Ada-Europe Working Group on Formal ~3
:?\'f Semantics, and the working group on Formal Methods. {'.;
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0.2 Purpose

The purpocse of the Ada FD project is to produce, during 1985-
1986, a draft formal definition of the language as defined by
the language Reference Manual ANSI/MIL-STD 1815A Ada.

We list the major deliverables:

I: A Formal Definition, referred to as the Ada FD, of ANSI/
MIL-STD 1815A Ada.

II: A precise definition, referred to as the Ada FD MTL, of
the definition Methods, Techniques, and Languages (no-
tations) used in producing the Ada FD.

I1I: A detailed, comprehensive cross-reference, referred to

as Ada FD/LRM, between the Ada FD and the ANSI/MIL-STD
1815A LRM.

Iv:. An Ada FD Primer introducing the Ada FD, in careful over-
views and details, independent of the LRM.

Ve Computerized, reasonably portable tools for reading and
manipulating (i) the Ada FD, (ii) the Ada FD MTL, (iii)
the LRM and the Ada FD/LRM, and (iv) the Ada FD Primer,
i.e. all essential documents produced by this project.

0.3 Project Partners

The Ada FD project is carried out under an almost fully paid
contract to the CEC jointly by Dansk Datamatik Center (DDC)
(Denmark) and CRAI (Consorzio per la Ricerca e le Applicazioni
de Informatica) (Italy). DDC is the main contractor.

In this Project DDC makes use of consultants (Prof. Hans

Bruun and Hans Henrik Lg¢vengreen) from the Department of Com-
puter Science at the Technical University of Denmark.
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) CRAI has sub-contracted certain parts of these project parts to :f:::.-
e the CNR-IEI in Pisa (Istituto di Elaborazione della Informazione '1
of the Italian Consiglio Nazionale delle Ricerche), and other-
' wise makes use of consultants from the Universities of Pisa and .
o Genoa (Prof. Ugo Montanari, Inst. of Informatics, Pisa, and Prof. ::}_:.
B Egidio Astesiano, Math. Inst., Genoa). o
L] et o
¢ S ;
DDC has more than 5 years of experience in formal definitions i
\F (mainly the CHILL and Ada programming languages), in extensive fj{:
" Ada programming (more than 1/3 million lines of Ada), and in 1{:.'_‘;:
. systematical development, from formal definitions, of production {'.:-:
e quality compilers for CHILL and Ada. £
1'_"‘
r T
v CRAI, with its sub-contractor and consultants, has played a ma-
jor rdle in the Italian Consiglio Nationale delle Ricerche pro- -::_{
o ject Cnet: a formal programming methodology and software engi- -;:j-
£ neering project for distributed programming and computing (Campus _
. net). ’
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1. REPORT STRUCTURE

The purpose of this report is twofold: first to identify and
review:

(1) language issues to be defined (Sect.2),
{ii) wusers and uses of a language specification (Sect.3), and
(iii) language specification techniques (Sect.4), and then

(iv) to identify (Sect.5) and review (Sect.6) the require-
ments which the above three aspects imply of the Ada
FD gpecification.

Given the (current) state-of-the-art in formal language defini-
tion techniques, section 6 is a preview of the extent to which
we, today, believe that the Ada FD will fulfil these require-
ments.

A final version of this report, to be edited when the project
is (almost) completed, will attempt to assess whether these
requirements have then been met.

S0: we see the three subject categories (i-ii-iii): language is-

sues, user groups/expectations and specification techniques as
almost orthogonally (independently) setting the scene for our
endeavour. Exactly hchWe see these subjects determining our
task is then detailed in section 5 (iv).

The reader is therefore asked to regard sections 2-4 as inde-
pendent approcaches to the problem at hand: the construction of
an acceptable definition of Ada.

The reason for 1listing so many language issues, uses, and
users is the following: we wish the resulting specification to
address as many of these as are relevant. Or, putting it in the
opposite: not doing a proper analysis (viz. realizing which
could be the potential language issues, uses and users) would
most probably hamper our specification work. We are trying to
avoid making a specification for its own sake.
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We want a specification which is of relevance, which is im-
portant, and which, hopefully, is to be influential. The areas it
could influence are those of the language issues, and the lan-
guage uses and users.

3-12¢6

A L S . Cad . T At e el
PRTSEIAS ST al .

. - E R R . P ST T e e s
e T T G e e A T T P L ST TP o S Y
PRIV E PO T P VP P8 T P (R P Y W PR VR PTIPE P 78 S V0 S DU DY

.
l.‘

-

e i

.

RN

v
-

Y




o . . o e " vy v
A DA A i) i R IS £ ATFETS - Woe . W W W, W T V.8 N

Dratt - 15 -

e v e
\'_a."-.

. Formal -
] Defindtion
E of Ada b
- 2. LANGUAGE ISSUES ,;»_:’:
P e
4 s
A language specification should take a clear stand on which "'_",‘
' language issues to cater for, and which to dispense with. ’
-
" Therefore, we list a number of language issues. ‘-”;
. o
3 In sections 5 and 6 we shall then conclude which of these .:
issues will be in the domain (ie. within the scope) of the sl
" specificatjion. :\} /
wd RIRY
B
o A number of language issues, other than specification, can be :
&‘F identified. The meaning of the concept "language issue" should B
transpire from the below analysis. There is no guarantee, nei- s
o ther that this is a complete list, nor that it is a list of in- ;":::
o dependent (orthogonal) issues. Since the subject of "language :-:'-:-
issues” itself is not exclusively a formal one, but also re- ::‘::'_:
L '-".-
LS lates to pragmatic issues (such as the interests of individuals, =
groups, and institutions), and derives from their expectations,
“ the treatment necessarily has to be informal. Yet, we shall try ::j.j:
S to be systematic. :

L3
by

We see the language issues to deal with:

PN
. .' ‘. " .’i‘

. (0) Language Design

Ce Wt Ty T

- (1) Language Properties S

-= Determinism, non-determinism, concurrency. incorrect- __“'

! ness, erronecusness, undefinedness, implementation

. dependency, etc. .-:;f.':

5 (2) Language Use -:.._.-

g5 -~ Use in the programming situation, by the ordinary o
programmer, for the development of worthwhile pro-

4 grans

-- Use for program documentation ' j::lj-"

;:i (3) Language Implementation ;:_':,‘-‘

== Development of interpreters

- -- Development of compilers s

:_::- -- Development of support tools: documentation aids, f"‘;_

proof systems, etc. ::"‘

e (4) sStandardization AN
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(S) Education: teaching and training, textbooks and reference
manuals

(6) Research

2.0 Language Design

The language has been, or has to be, designed.

In designing a programming language, the designer usually has
two other concerns: programming techniques (methodology), and
compiler (interpreter) implementation. The designer should,
however, have a third concern: ease, or elegance, of explaining
tpe semantics. Formal specification may offer a tool to be used
aétively by language designers.

One last concern could be: to what extent, in what sense, and

how (if relevant) a language design permits language subsets or
extensions.

(The current version of Ada is constantly undergoing re-design.
It is not planned that the Ada FD project should offer explicit
liason to the on-going ISO Ada LMC (Language Maintenance Commit-
tee). We shall, however, inform the ISO Ada LMC about problems
arising from potentially questionable language design. But that
is not an active design issue, such as "what effects do I get,
if I design a construct such-and-such?". Our input to the 180
Ada LMC is more of the passive character: “since you have now
designed this/that construct such-and-such, let us inform you
of the following problems: ...".)

2.1 Language Properties

The language has properties.

The issue here {in the context of given, accepted, and reliable
language designs) is: Independently of the detailed specific
semantics, how can we characterize and classify language features

. 1

;‘D‘;’
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. 80 that a design (and its specification) most "directly" and
) faithfully, abstractly defines these features.

! The kinds of language construct properties we have in mind are:
E& (i) deterministic features, like statement seguencing
i and specific order of elaboration (e.g. left-to-
Loy right)
, (ii) non-deterministic features, like arbitrary
:'-"'.‘ order of evaluation (e.g. subprogram parameters)
&
o (iii) concurrency (parallelism), like tasking ;j::_'.';
. (iv) incorrectness: certain syntactically correct composed .\.:;:j.
‘é features not being defined semantically oy
o (v) erronecusness E:j:'_'-‘
i e
i (vi) undefinedness o
' (vii) implementation/target machine dependent features -'-::A-:
¢ b
v The problem at hand is: for each construct, or combination of 3'.'-;-}
constructs to classify it according to the above categorization, d_
!, and then, if feasible, to find and apply a most fitting defini- :\::
' tion technique. \‘,
<
S et
'-:
2.2 Language Implementation AN
o ;‘.'\"'.
MRS
N,
o The language has to be implemented. Hence, implementability is Y
- a language issue.
IS
;: Language processors are either: ‘_l:.:::
- interpreters, o
fﬁ} - compilers, or ' . Lo

- support tools N\
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C 2.2.1 Interpreters ‘.
>
o
2 It is, for example, a language issue to which extent various ii
~ bindings of a program (e.g. of its names to their meaning) can v
¢ only be done at run-time. That is: how dynamic are these bindings -
Z‘.. in the sense of names being bound (in different runs of the -\,',j
» program) to different kinds (or types) of objects. The more so,
% the more programs have to be interpreted. s;
o 2.2.2 Compilers o
S At the opposite end of the binding spectrum from all being ful- . o
‘if ly interpreted, we have fully static bindings, i.e. bindings b
?: the validity of which can be checked before run-time, i.e. at =
‘ so-called compile~time. The more so, the more programs can be .
I~ compiled!
: 3
N -
x:.
> pi o
S0 the position in the spectrum from campilability to intrinsic
'E: forced interpretability is a language issue. It is a relevant
,f question whether a language definition reflects this position ;:
8 RS
» in the spectrum. -
-
. 2.2.3 Support Tools
{ A number of different kinds of support tools can be identified. -
< &
z Programming-in-the-Small Tools
f Program Re-use Tools "
- Programming-in-the-Large Tools
% Program Verification: Theorem Prover and Checker Tools ;j
Separate Compilation Supports -
Program Linking and Loading Tools -~
P Pl
ﬁf Program Testing and Validation Tools f;:
L Program Debuggers
U o,
. Program Execution (Run-Time) Supports ii
v Program Maintenance and Version Control Tools ‘
(o .
~ N
s "
N
L
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The extent to which a language lends itself, through distinct
or similar facets, to each of these tooling and support possibili-
ties (whether desirable, or relevant) is a language issue.

«3 Language Use

The language is to be used.

The issue here (independently of a formal language specifica-

tion) is: the use of the language in the programming and in the
program documentation situations.

An additional language question may be: which are the various

uses (the categories of applications) into which the language
will come?

We attempt, without here expecting to be exhaustive, to list
some uses:

Computation-Intensive: Numerics (Number “Crunching”)
Symbolics (Algebraic Computa-
tions)
Process-Intensive: Control (Embedded systems)

Communication (Networks)

Data-Intensive: Databases (Input Systems,...)

(Information Systems)

Deduction/Inference-

Intensive: Al (Knowledge Based Expert
Systems)
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These various uses are made by users, and these users expect to
find (in a language definition) answers to questions related to
each of the above-listed areas.

2.3.1 Programming and Program Proofs

Program; have to be developed, and some of them proven correct.

Therefore, the issue is : in which ways does the programming
language lend itself to, for example, stepwise, modularized

(etc.) approaches to development, and to reasoning about worth-
while programs.

2.3.2 Program Documentation

Programs have to be documented.

The issue therefore is: through which mechanisms does the lan-
guage lend itself to program-documentation.

2.4 Standardization

A language can be standardized.

The ease or difficulty with which (1) a language can be standard-

ized, (2) a standard can be adhered to, and (3) a standard can

be maintained is a language issue.

2.5 Teaching

A language has to be taught, i.e. it has to be understood.

The ease or difficulty with which a language can be taught and
understood, and textbocks and reference manuals written, is a
language issue.
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ﬁ‘ 2.6 Research w’a
NG

~ Z:f:'
A language is a live or a dead object. “

. o
’ The excitement (disappointment) generated by a good (bad) lan- &"

° s

e guage design is reflected back into the scientific community. ‘

3 The foundational and methodological research into a language is g

a language issue - even when this research is done for pragmatic, )

f’-',' opportunistic reasons. “
& .'{:
< Kt
‘.J .
2:-._; 2.7 Conclusion A
We have listed some language issues. We have tried not to com- :',:j.

mit ourselves, or the parties involved in these issues, yet to ::'::

any stand on these issues vis-a-vis a formal definition, and ;::

which of these issues an Ada FD reflects! The next section will _

take a first view of this latter concern. >4
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3. USERS AND USES OF AN Ada FD

Various authors have listed categories of users.

In [2] we find:

Users, implementors, and textbook writers.

In [4] we find:

Users, educators, manufacturers, compiler writers, and
theorists.

In [5]) we find:
Designers, implementors, and programmers.
In [6], we find the best list so far, including:

Novice/practising/sophisticated progammers, local experts,
educators, implementors, validators, designers and language

reviewers, standards people, programming methodologists,
and formalists.

These lists of users imply similar lists of uses. Below, we
have basically followed the proposal of [6].

Let us assume that a perfect, all-encompassing formal definition
of Ada, with all the desirable properties (whatever they are),
could be produced! By whom and to what would or could such a
definition potentially come into use? This section tries, on
the background of the tentative enumeration of section 2, to
list such potential.

Some [4] say that "a language definition should be the ultimate
authority on a language”, and "it must contain answers to all
questions about the language”. [4] does not outline the nature
of these questions. Our section 3 is an attempt to do so.
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3.1 Language Designers [5]

Usually, language designers are experts in program coding (i.e.
program implementation), and in language implementation (typi-
cally "compiler writing"). Language designers do not, with rare
exceptions [27], master natural (national, e.g. English) lan-
guage stylistically well. At least not to the degree that is
really needed for writing a precise reference manual. Despite
this, language designers are most often the only, or at least
the first, to write such an informal document. Language
designers are to a scmewhat larger degree capable of reading
the now classical formal definition styles ([37]).

Despite the above, a rdle of a formal definition is to advice
the designer of all language trouble spots, i.e. ambiguities,
undefinednesses, inconsistencies, and incompletenesses.

Another rdle of a formal definition derives from the process of
attempting to formally define a language. The ease (or difficul-
ty) with which this definition process proceeds could be an
indication of scme "measure” of naturalness (“artificiality")
of the proposed language construct. [This last postulate is not
objective in cases where the chosen definition method (tech-
nique and semantic language) is ill-suited for its purpose,
anyway].

Section 5 will state the current Ada FD position on the above
points.

In summary, we conclude that ([6]) "language designers (and
distinguished reviewers) should be primary users of an Ada FD
- also in their rdle of advising standardizing committees
about language changes™.

3.2 Implementors [5]

In [5], three kinds of expectations that implementors might have
of an Ada FD are identified:
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(1) "advice concerning the meaning of some language feature”,
incl. "what it is supposed to do",

(2) "advice concerning implementation", and

(3) advice concerning "actual certification of compilers,
or possibly compiler components".

[In [5] the above (1-2-3) are stated w.r.t the functions of
a validation centre - rather than, as here, w.r.t an Ada FD.]

Certainly an Ada FD should resolve (1).

Insofar as an Ada FD is constructively defined, e.g. in a model-
oriented denotational or coperational semantics formalism, such
an Ada FD could also give some kind of advice concerning pt.

(2).

And insofar as an Ada FD can serve as a reference point w.r.t.
validations, it can also (circularly) satisfy point (3).

Ways of serving as a reference point for certification (valida-
tion, etc.) are: (1) implementations could be proven correct
w.r.t an Ada FD, and (Il) implementations could be subject to
testing by means of a get of correct and incorrect programs
automatically generated from an Ada FD. :

Section 5 will state the current Ada FD project position on the
above points. B

In summary, we conclude that ([6]) “"implementors of compilers,

interpreters, and support tools (interfacing to the syntax and
semantics of Ada) need the Ada FD to decide on language issues”.

3.3 Programmers

Following [6] we sub-divide this group into:

“(a) Novice Programmers:
== @.g. having never heard of generics,
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(b) Practising Programmers:
-~ e.g. users of generic packages,
(c) Sophisticated Programmers:
-- e.g. producers of generic packages."”

The position of [6] seems to be that neither of these groups
should or will be potential users of an Ada FD. Ve tend to con-
cur.

Instead, we believe that other user groups, in particular educa-
tors (writers of reference manuals and textbooks on Ada), and
local experts (i.e. programming consultants), should/will act
as intermediaries between programmers and an Ada FD.
In [5]), on the other hand, a useful emphasis is put on the rdle
of the programmers vis-a-vis an Ada FD: discrepancies (found
by programmers)

{l1) between a validated compiler and reference manuals or

(2) between two validated compilers, and

(3) clarifications of language points which are unclear in
reference manuals

should be duly communicated to the definers and, subsequently
the maintainers of an Ada FD.

3.4 Standardization

Members of language standardization committees (ISO, ECMA, ANSI,
BSI, DoD) and language maintenance committee (Ada LMC) have many
rdles [6]: "they act upon advice from validators (to resolve
mis-interpretations), from designers and reviewers (to decide
(between) possible changes)", and from implementors (e.g. to help
easing the burden of compiler realization); and they are, in
cases, otherwise influenced by e.g. manufacturers' wishes (to
sub- or super-set the language, to interface it to database
languages, etc.).
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It is believed that members of such committees [6] "should be
most familiar with an Ada FD, and interested in its maintenance".
Their use of an Ada FD and its updates should be to help decide
on, or between proposed language changes. In attempting to
introduce a language change into an Ada FD, insight might be
gained as to the desirability of such a change. We are referring
here to the ease (naturalness) (or difficulty (artificiality))
with which such a change can be introduced into an Ada FD, to
the containment (or propagation) of language changes, and to
the reduction (or expansion) in size of an Ada FD that proposed
language changes might incur.

3.5 Teachers, Instructors and Programming Consultants

To this class we count the writers of text books, reference
manuals, and programmers' guides on Ada. And we shall illustra-
tively see their rdle vis-a-vis Ada in this 1light, only.

It is [6] "expected from them that they spend some time study-
ing an Ada FD". And it is believed that they should be able,
from such reading, to extract various levels of informal docu-
ments, also representing various views on Ada. 1Included among
these, should be the ability to extract various kinds of language
subsets for student and programmer introduction and programming
specialization.

In addition, they should be able to consult the Ada FD on
language issues arising from their involvement in deeper tech-
nicalities, e.g. where, on behalf of programmers and implemen-
tors, they find the kind of discrepancies listed in section 3.3

3.6 Scientists

In [6], this group of users of an Ada FD is also called for-

malists.
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(It will basically be computer scientists who will produce an
Ada PD.)

Formalists (computer scientists) could potentially be extensive
users of an Ada FD. Their uses of an Ada Fd could be as a basis
for [6]:

(1) the derivation of proof rules for Ada programs - given
that the Ada FD in question is not itself formulated in
terms of proof rules:

(2) the derivation of Ada program transformation rules -
possibly for use in programming or in compiler op-
timization; and

Y

(3) the derivation of a co-ordinated formal semantics of a
specification language for defining program properties.

. ux e B

Point (3) is an extension of points (1-2). In addition, an Ada
FD could be used by formalists as a departure point for:

(4) investigations into its semantic foundations, other
than (1-2-3), for example into areas that may not expli-
citly be covered by an Ada PD (areas such as: fairness,
performance, complexity, realtime concerns, etc.); or

(5) investigationl'into other, competitive semantic defini-
tion methods for the sake of fruitful (counter-)argu-
ments, the further progress of science, etc.

The production of an Ada FD is a considerable undertaking and
will result in a very large document. Such a document will like~
ly not be perfect - solving all recognizable issues, let alone
identifying all such. An Ada FD is therefore expected to be a
live document continually being questioned by scientists.
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B 3.7 Validators R
.Y
! The issue of the relationship between an Ada FD and Validation -;.
is treated in (3] and [5-6]. -'5.
! {S] examines the rdle of an Ada FD document w.r.t. the functicns _:
of an Ada compiler validation centre. [3] examines postulated s
“_: desirable relations between an Ada FD and the so-called ACVC ‘;'s
test suite. [6] effectively summarizes [5]. "
- The issues raised by [3] are dealt with in our section 5.10. We =
" now summarize [5-6] and also inject additional points.
By validation in general we mean a process, between a customer ::-f.
o and a supplier, whose aim it is to improve confidence in the ¢
correctness of a specification, a design, or an implementation
ff‘j (i.e. code), or in the claim that a specification, a design, or E"‘
i an implementation fulfils given requirements. .
o
i in general we see such a process as being carried out by some -~
- combination of formal proofs of correctness, and test case ex- St
. ecution (i.e. testing). A proof of correctness would be of an ,’,.:
: implementation with respect to a specification. The proof (of a :::.
theorem) could either be provided by a theorem prover, or a ma- '1:
ﬂ nually provided proof could be verified by a proof checker, or \.
L by some combination of the two. The theorem is stated by sup- .:::;
’e, plier and customer in unison. The selection of test cases and ‘-':-
L'\ their expected results is likewise a contractual issue between ,_.:
supplier and customer. \
:':: ;:
" Testing is a combination of two things: (1) a systematic and ;“‘
:‘_\, organized search for a counter-example to a claim that a speci- E:
v.',‘ fication, a design, or an implementation is correct, and (2) =~
the (possibly partial) execution of a specification (etc.) in _
"3 order to demonstrate that it (they) fulfils some non-functional :-:‘_:
. requirements. Correctness proofs usually only tackle functional :-‘,
- (formalizable) requirements. On this very general background, N
b the validators' use of an Ada FD is many-fold: -
*. :‘-:.'
b 5
. i
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(1) as a basis for organizing the systematic search for coun-
ter-examples to claimed proofs,

(2) as a basis for generating test programs - both correct
and in-correct, and

(3) as a basis for deciding on tests for non-functional, i.e.
unspecified properties.

Concerning (2) there are two issues related to the possibility
of using an Ada FD: (1) to synthectically generate correct and,
desirably, incorrect Ada programs, and (II) to generate the
kind of answers a compiler should output upon (or while) execut-
ing such generated programs.

Very little knowledge is available in these areas (1-2-3). [6]
mentions [28] as a possible source of inspiration.
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4. LANGUAGE SPECIFICATIONS

References [10,11,12,15,16,17] contain specific language spe-
cification proposals. [5] actually lists a more refined list of
specification varieties than [16]). Section 4.0 borrows from [5].
Section 4.2 borrows from [16].

4.0 Language Description Categories

A language can be defined in either of a number of alternative,
contrasting or complementing ways:

(1) through a Reference Manual [23], and its Rationale [24]
(2) through an Implementation Guide [20]

(3) through an Implementation [19]

(4) mathematically

[5) also lists the possibility of a pseudo-formal (notational)
description, which 1lies somewhere between (1) and (4) in
that only an informal definition might be given for the descrip-
tion language itself, whereas its syntax loocks formal. In a
sense, [21], [25]), and, to a small extent, [22] could be
rightfully accused of being pseudo-formal.

4.0.1 Reference Manuals and Rationale

By a lanquage reference manual (LRM), we operationally understand
an informal document which in a technically carefully controlled
dialect of a natural language, e.9. English, explains the seman-
tics of another language, namely the programming language. (The
syntax is usually given by some BNF-like grammer.)

By a programming language rationale is understood a necessarily

informal document which explains the pragmatics of the language.
(It is informal since pragmatics is an informal issue.)
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b ]

, An LRM [23] does exist, and a draft partial Rationale [24] now Vi
j exists. X
5y .:-:
X ~u
> Usually, LRMs suffer from lack of precision due to the use of

&

a natural (national) language. To alleviate the lack of -
A.‘

: precision, the description often becomes stilted, legalistic. .

i [26]) could be accused of that.

\

)

Rationale documents are the source of the non-functional defi-
o nitions and pragmatic information - where LRMs tend to concen- “t
~ trate on syntax and functional semantics.

:', LRMs and Rationales are deemed indispensable for reasons of

readability, but suffer in accesibility and referenceability,
- as defined in section 5.6. r
¥ N

4.0.2 Implementors' Guide B
- By an implementors' guide (for some programming language), is N
. understood a (formal or informal) document which lists any o
3 number of hints on how to implement a processor for that

language. !
. For Ada, there was an implementors guide [20]. 1Its usefulness e

was rather limited. [20] suffers from four things: (1) it is 5

based on an informal LRM, (2) it was issued at a time when .
A Ada was still being (re-)designed, (3) it is itself informal, ‘
> and (4) it could be critisized for reflecting an out- B
:'. dated compiler writing technology. i:
> As a reference to a programming language for others than .
.: implementors, an implementors' guide is usually almost useless. j:::
N

Insofar, as an implementors' guide takes the opportunity to o

clarify language semantics that is left unclear in an LRM, .

such a guide is useful, but we consider the place and time
ill=chosen precise semantics should be given in the LRM and
. in an Ada PD.




Insofar, as an implementors’ guide enumerates ranges of permis-
sible implementation choices, such a guide is considered most
useful.

Finally, the concurrent existence of both an LRM, an Im-
pPlementors Guide, and possibly an Ada FD poses the problem of
maintaining consistency. Especially, if the last two are
derived from an LRM. We advise the other way around:

the derivation of an LRM and Implementors Guide(s) from an FD.

4.0.3 Compiler as Language Describer

In the 1960's it was a commonly taken view that compilers de-
fined their languages [19). As long as programs in what was
believed to be one language were not ported between different
compilers (usually on different computer mainframes), no real
harm seemed imminent. With porting, or copying program frag-
ments between different installations, problems became ap-
parent. By porting compilers, these problems seemed to dis-
appear for a while. There was, and maybe still is, a need,
within one mainframe to make use of distinct processors for
supposedly the same language, e.g. compilers which optimize,
for production run-time performance, or interpreters with
good programming time acbugging facilities, or, perhaps more
relevant, which ‘prove’ program properties!

We take the view that neither of these kinds of processors

define their language, but that they are “derived" from a
(possibly formal) definition.

4.0.4 PFormal Definition

The fourth language description, or definition, possibility
is that of a formal definition. We devote sections 4.1-2 to
that subject.
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4.1 What is meant by ‘Formal’

From the terminology, appendix B, we get definitions of what
is meant by formal: formal development, formal document, for-
mal language, formal method, and formal proof. The essence
of 'formal' is that whatever is formal is expressed within a
formal system, i.e. in a formal language, either being, or
accompanied by, a proof system.

The notion of a formal system is invented in this century.
It was introduced in order to tackle the foundations of mathe-
matics. As such, ‘formal systems' belong to meta-mathematics.

And as such, they certainly run the danger of loosing a hold
in reality [40].

Mathematics, for milleniums, was tightly rooted in observa-
tions in physics and in everyday human life. Accordingly,
much mathematics was presented with analogies to this reality.
Meta-mathematics tends to be presented at most by reference
to mathematics - a universe in which arbitrary, finite and
infinite, imaginable and un-imaginable objects may exist.

Computer science deals, not with mathematics, but with the
objects that may exist in machines and in their man-made cre-
ation. To do computer science, we use mathematics. But we
follow, in this project, the dogma that this mathematics
should be firmly related to the programming language world
as outlined in sections 2 and 3.

4.2 Formalization Techniques

4.2.0 Deductive and Model-Oriented Specifications

For the purposes of the present subject, an Ada FD, we
distinguish between two styles, or aims, of formalization:

Deductive, Assertional, or Property-Oriented, and
Constructive, or Model-Oriented.
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! (We refer to the terminology for the definition of these .'
terms.) f-\.'
. )
E-;: Proof system oriented specifications, i.e. specifications ::-
which directly lend themself to reasoning (about the object >
E defined, and to be implemented), are typically deductive ..-_
- (assertional, property-oriented). Such specifications, when .-
. expressed freely, usually require a proof of their (own)
‘:—; consistency and completeness, and of the fact that they do .
. define something. That is: that they have at least one -
;.:T model. ::-
i Model-Oriented specifications, as the name implies, directly E"ﬁ
E describe, i.e. are, the models. It is in that sense that
they are constructive. -
; %
r Usually, one desires the properties, but specifies a model. e
Several reasons may account for this: (1) most software people, ,
h today, are trained to think model-oriented, (2) model-oriented g
specification techniques are, today, capable of tackling the ,-
's definition of far more complex systems than the deductive :_:
' techniques appear to be, (3) what is specified has to be ::§
- implemented, i.e. one has to find a model - sooner or later, ‘e
v and (4) the state-of-the-art in going from a deductive defini- o
) tion to a constructive specification is somewhat lacking. ‘\'
2 X
- A property-oriented definition lies close to the customer's 'w?
way of formulating his requirements, whereas a constructive !
'-f-f specification similarly lies close to the supplier's way of ‘_t:'
thinking of his job: that of developing an implementation '_::
\.- from the specification. :
L o
s, Ideally, we would like to. see first a pure, deductive defini- ".j.:
R tion (of, say, Ada), and then, from it, rigorously derive a N
N constructive specification. ;: .
’ >
‘ Realistically, we may hope that it is possible to prove what :
o is deductively defined (i.e. a deductive definitions' axioms *_
:::~ (etc.)) to be satisfied (i.e. to be properties) of a construc- Y
ol




tively specified model.

From the above, the reader may guess that the current Ada FD
project takes its departure point in a model-oriented world,
but that everything will be done, within the evolving Ada FD,
to secure the possibility of deriving properties rather
directly.

A number of specification techniques cover the span from de-
ductive to model-oriented definitions: Axiomatic, Algebraic,
Structural Operational, Denotational and Mechanical Semantics.
A short, very cursory survey of these will now be made.

4.2.1 Axiomatic Semantics

Roughly, an axiomatic semantics specifies relations between
states of the specified system.

In an axiomatic specification of a programming language, its
semantics is given in terms of axioms and deduction rules
(for using these axioms).

[36, 37] are seminal references on this subject.

Such axiom systems seem ideal as proof systems for the lan-
guage they specify. The problem is, however, that they become
rather cumberscme, if not outright in-applicable, when having
to deal with a complex language like Ada. Focal points for
complexity are: gotos, procedures, parameter passing, and
tasking. '

This rather negatively sounding dismissal of Axiomatic Seman-
tics as a basis for an Ada FD must not be mis-understood.

Beautiful languages can be designed and effectively used,
their semantics being so specified. [42, 43] provide con-
vincing evidence. Here, the axioms are expressed in a aif-
ferent style and are called laws. Most likely, future lan-
guages will be designed on the basis of their proof system
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being simultaneocusly evolved!

4.2.2 Algebraic Semantics

An algebraic semantics specifies the meaning of a system as a
class of algebras.

In an algebraic specification of a programming language, its
semantics is given in terms of an algebra presentation,
consisting of a signature and a set of axioms. Usually, an
algebraic presentation is (syntactically) constrained so as
to guarantee the existence of models. The meaning of an al-
gebra presentation is usually some class (or category) of
algebras. The axioms are usually equationally specified.

[35) provides today's most accessible introduction to alge-
braic semantics.

Again, we find that algebraic semantics specifications ought
to be ideal as a basis for language proof systems. No alge-
braic specification has yet been given for any sizable clas-
sical language (ALGOL 60 or larger), let alone for concurrency
aspects of such a language. Problems in their applicability
(in addition to those of axiomatic semantics techniques) seem
to be their inadequacy in handling higher order functions (pro-
cedures with procedure parameters) and tasking.

This rather negatively sounding dismissal of Algebraic Seman-
tics must not be misunderstood. What we are indicating is
only that we may not be defining (parts of) Ada directly in
terms of algebraic semantics. You may find, however, that
the definition style we eventually adopt will involve (a)
definition language(s) the semantics of which may be given
algebraically.
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4.2.3 Denctational Semantics

A Denotational Semantics defines the meaning of a system to

be a set of mathematical objects (like sets, functions, cate-
gories).

In a denctational specification of a programming language, its
semantics is usually given as follows. First, one identifies
the specific mathematical object one wishes to attach to simple
identifiers of programs. [Examples are: variable identifiers
may denote functions from so-called enviromments to locations,
label identifiers may denote so-called continuations, i.e.
functions from stores to stores, procedure identifiers may de-
note functions from argument (denotation) lists to continu-
ations, etc.] Thus, we first establish the meaning of simple
language constructs. Then we express the meaning of composite
language constructs as functions of the meaning of their con-
stituent components. (This latter is really an algebraic
(homomorphic) principle, and not necessarily characteristic
only of denotational specifications.)

Denotational specifications directly specify models. As such,
they are not directly useful as proof systems, and not much
aystematic work has been done, nor are systematic techniques
available for the extraction of proof systems from denotational
specifications. The power of denotational semantics is that
it deals effectively with gotos, procedures, parameters, and
exceptions and with most other deterministic language features.
Problems of denotational semantics are shared variables,
Ada-like processes, and non-determinism. We refer here to
the availability of techniques proven on large scale applica-
tions. There are recent research results (like [44]) which
appear very promising, but for this project they have, unfor-
tunately as it may seem, to be discounted for exactly the
reason of their experimental nature.
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4.2.4 Structural Operational Semantics

A Structured Operational Semantics (SOS) defines the meaning
of a system by the set of all allowable transition sequences
that may be observed in a system (state) while subjected to
execution.

It is in this latter sense (execution) that SOS is "opera-
tional®". It is structured in that transition rules are in-
ductively specified, based on the structure of the system in-
put language.

[32, 45] provide first and latest references to SOS.

An SOS specification is usually given in terms of a set of
transition rules and rules of induction for using the former.
A transition rule consists of a triple: the "before"”, the
“after”, and the "condition" (label) under which a system may
transit from a before configyuration to an after configuration.
Configurations and labels are rather free-wheeling notions,
and may involve state components such as stores, program frag-
ments and other control information.

SOS specifications eminently model non-deterministic and con-
current language aspects, in addition to trivially being able
to model deterministic features. SOS specifications appear
promising as a basis for direct or derived proof systems. SOS
specification techniques, when brought to bear on the full
complexities of Ada tend to result in rather complex con-
figurations and labels.

4.2.5 Other Specification Techniques

We have indicated that none of the above techniques, except
perhaps SOS, is fully capable of handling the specification
of all aspects of Ada.




In addition to the above techniques, others have been
used and/or proposed:

SEMANOL [17, 46], VDL [34]), Meta-IV/CSP [21]. This is not
the place for even a cursory description of these more
operational (mechanical) definition styles.

It is implied in the above rather cursory remarks that
the present Ada FD will not entirely rely on any one of them.
[17] points out, very importantly so, the need for, first,
establishing a model for the underlying semantics when dealing
with a complicated system like Ada. That is: that one, in a
sense, starts afresh, forgetting.‘for a while, the dogmas of
e.g. Axiomatic, Algebraic, or Denotational Semantics, i.e.
of their underlying mathematics.

4.3 The Ada FD Approgch

Although not intrinsic to the purpose of this document,
we do present a very cursory overview of the approach to an
Ada FD currently taken within the project.

D-SMoLCS [33]

The Method

In the D-SMoLCS (Denctational SMolLCS) approach, the formal
semantics of Ada is presented in two hierarchical, top-down
steps:

(1) Denotational Model

(I1) Semantic Algebras (SMoLCS)

It is developed in the reverse order of thesel
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== I: Denotational Model

The denotational model, in order to model all aspects of con-

currency and non-determinism, will be expressed using a number

of operators like e.g. | (for “in parallel®), (overloaded) +

(for “choice"), (for “followed by"), etc. This model can be
based on the use of the exit mechanism, and in either an
imperative or an applicative style (as possible in Meta-1IV),

or on the use of a continuation mechanism (also possible in
Meta-1V).

(As a consequence, the resulting model is one which can be
read by humans.)

== I1: Semantic Algebras (SMolCS)

The denotations of the model presented in the first step are
presented in this step. On one hand there are these denota-
tions, and, on the other hand, there are operations (like
“f*, %e", " %, ",", ";", etc.) on them. The meanings of
these operators are likewise presented.

These presentations are given in five configurational, bottom-
up sub-steps:
Basic Transition System

In the Basic Transition System sub-step, we specify what the
element Actions of the individual processes are.

Synchronization

To a Basic Transition System, we add rules (parameters)
governing the synchronization points between processes, i.e.
we define atomic actions.
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Parallelism

Given a Synchronized System, we add rules (parameters) for the
(parallel) (e.g. mutually exclusive shared update) composition
of processes.

Monitoring
Given a Parallel System, we add rules (parameters) which define

restrictions on the behaviour of the processes of the parallel
system.

Observational Semantics

Given a Monitored System we may now wish to interpret the
given semantics at any one of a number of levels of observa-
tional abstraction: input/output, interleaing, fair-merging,
truly parallel, etc. This is done by suitably parameterizing
the algebraic specifications which have been given of the
synchronization, paralleism, and monitoring operators. '

D=SMolLCS: Its Semantics

SMOLCS can be embedded in an SOS specification. For the sake
of obtaining the much desired properties of the Observational
Semantics, Algebraic embeddings have instead been used. Other,
more functional approaches are conceivable.

The Current Ada FD Components

Basically, we plan to divide the Ada FD itself, into two-by-
three components:

(1) A static, and
(2) a dynamic semantics specification - each consisting of
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E (1) syntactic and . =
{2) semantic domain specifications, and ’: ‘
N (3) the semantic function definitions/equations. :a‘,
8 AN
v
L‘" ‘ut"‘
The domain specifications will be specified in Scott theory, 5L,
F i.e. as possibly reflexive domains. The notational style is ¥
A basically that of Meta=IV. 4
‘4
vy
L The static semantics functions will basically be centered ‘_‘:'
around a pure, applicative Meta-IV subset (e.g. not using
%y the exit mechanism), but may define certain static seman- y
[ AN
a tics domains and operations upon their objects algebraically. -3
K4
" K
E The dynamic semantics is presently planned to be based on the s
D-SMoLCS approach. For practical reasons it will consist of
'F,Z: three parts: “sequential Ada", "tasking Ada", and "Input/Out-
e put Ada“. ;:Z‘.:
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i 2. REQUIREMENTS TO THE Ada FD ');'
B | 3
First, we give some overviews. The Ada FD, it is claimed in (1], e
! should be: —
(1) A Legal Contract, g
@ (2) Consistent and Complete, Y
(3) Comprehensible and Precise, f;
g (4) Correct, and believed Correct (latter from [8]), 7y
(S) Accessible and Referenceable (from [8]), '.'.t
N (6) Permissive - where appropriate (from [8]), ',‘f\
E (7) Un-biased, e
(8) Suitable as a basis for: .
p (8.1) writing user manuals, textbooks, and primers, ‘
R (8.2) developing language processors, and -';:L:
- (8.3) validation, - and ,;.'
'e (9) Suitable as a basis for: . £
(9.1) proving correctness of Ada processors, N
:‘ (9.2) proving correctness of specified Ada programs, and ;
~ (9.3) generating test-programs for validation. ;‘3'
S
i In [2], we find that an Ada FD might: J_
:l:§
A (1) resolve ambiguous points in the existing standard, =
E:- (2) omit points of the standard, and \‘
(3) include points not addressed in standard.
. ~
(It should, to be proper, be observed that [2] asks "to what ex- .
'.:::' tent an Ada FD" should address (1-2-3).) -
™~ "
" In [3], it is argued that an Ada FD should somehow be correlated :
‘;‘\-: to the so-called "ACVC test suite” (jargon for an "Ada Compi-
ler Validation Capability"” collection of some 2000 test pro- ;_;
£, grams). .,
vé .
. From [4]), we extract the following requirements: N
3 A
(1) Basis for Compiler Writing, ;E
o (2) Compiler Validation, AR
(3) Proof of Compiler Correctness,
& i
¥ >
~
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(4) Basis for deriving an Axiomatic Proof System,

(6)
(7)
(8)
(9)
(10)
(11)
(12)

Basis for deriving Program Transformation and Optimi-
zation Rules,

Basis for Rapid Prototyping,

That it be Unique (no Alternatives),

Complementing and Consistent with LRM,

Exposing existing/current LRM inconsistencies,
Guiding Language Clarification,

Machine Processable, and

Correlated to ANNA [18].

In (5], we find the following requirements:

(1)
(2)
(3)
(4)
(5)
(6)
(7)

Completeness and Consistency,
No Ambiguities,

No Over-Specification,
Readable,

Maintainable,

Modular, and

Basis for Proofs.

In [6], related to user categories, see sect. 3 above, we again
find a good overview of requirements to an Ada FD: namely that

it be suit

(1)

(2)

(3)

(4)

(5)

able for use:

as a source document: by formalists (i.e. be formal),
validators (i.e. be executable), implementors, educa-
tors, and designers,

as a canonical contract (standards) document: by stan-
dardizers,

in implementations: free from implementation bias and
permissive where appropriate,

as a reference document: by educators and local ex-

perts, and be: comprehensible, concise, accessible and
referenceable, and

by formalists, validators, and implementors: consis-
tent and complete, and believed correct.
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[6] seems to have used [1] and [8]‘'s requirements, but relating
them to user groups which are missing in [1] and [8].

In [7], we £find the requirements that an Ada FD should be:
(1) machine readable (for tool development.),
(2) human readable, and
(3) accompanied by user's guides, structured by user

target groups, (e.g. as listed in section 3 [5]).

From these lists, we have then extracted the structure of this

section:
1 Legal Contract
2 Consistent and Complete
3 Comprehensive and Concise
4 Correct and Believed Correct
5 Accessible and Referenceable
6 Permissive
7 Implementation Independent
8 Basis for Processor Development
9 Basis for Validation
10 Basis for Proof Systems
1l Mechanizable
12 Basis for Rapid Prototyping
13 Correlatable
14 Basis for Document Derivation
15 Maintainable

S.1 Legal Contract

By an Ada FD constituting a 'legal contract', we understand some-
thing that eventually borders upon the legal meaning of 'legal
contract’', namely that a user can rely on his 'formal' under-
standing to be the same as the developers' similar understanding.
This point is then ultimately seen as leading to the derived
requirement that a definition is formal.
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Thus, a formal definition could ultimately serve as a legal
document in a court of law.

5.2 Consistent and Complete

By an Ada FD being ‘'consistent and complete’, we mean what
these terms mean in mathematical logic.

5.3 Comprehensive and Concise

By an Ada FD being ‘'comprehensive’, is meant a relative thing:
that any person., brought up in reading formal definitions (of
such-and-such style), will have no undue, or unreasonable diffi-
culty in reading such definitions.

By -an Ada FD being ‘concise', we similarly mean a relative
thing: that the definition is precise and not unduly
long. '

(Both properties are definition-style independent, i.e. are
solely a function of the success with which the definers have
achieved their goal, i.e. their ability to use a given defini-
tion style according to its best intentions.)

5.4 Correct and Believed Correct

A formal definition of the functional aspects of a language is
‘correct’ if it meets the requirements of the customer of that
language. Mostly, these reguirements are informally stated.
Hence, we mean something not achievable when we require a
definition to be correct! Or we could claim that a definition,
if it is complete and consistent, “"by definition" is correct.

The phrase, 'believed correct', is therefore introduced. By an
Ada FD being ‘believed correct', we mean something relative: if
the definition is formal, then it "mirrors", in some informal
sense of "equivalence", a "similarly official” informal defini-
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. tion. That is, there are no obvious discrepancies between the :‘_
E’ Ada FD and the original intentions (as for example expressed in j-'.;
) N
language requirements documents), or informally expressed speci- e
! fications, viz.: the LRM. g
4 l::\
W
- 5.5 Accessible and Referenceable hal
- Y
) y
N

By an Ada FD being ‘accessible and referencable’', we mean some-
thing a bit more absolute.

b
Xy
~

4 o
[ To the Ada programmer and the Ada language processor developer, _‘
L ’ the Ada language consists of a number of commonly agreed, ver- W
| bally identifyable, semantic ideas (concepts, constructs, no- N
v;':j tions). :::'-{
. o
-~ Answers to questions about properties of each of these should \-
E preferably be found, say, within the short span of a page of a =
] definition, i.e. be accessed by a rather direct look-up process. i:
’ Vice-versa: once this is the case, then one can refer uniquely _::
R to such definition pages (etc.). ‘ :::
i {(This ‘ability' is partly a language, and partly a ‘definition'’
property: i.e. if the language otherwise permits, then the "

E;_:-: above 'locality’ property should be satisfied.) "
LR

5.6 Permissive

| JP S R MR A
A o K

v"_:. By an Ada FD being 'permissive’, we mean that the definition, :
R ideally, expresses all permitted aspects of 'order of evaluation',
N ‘optimization’, ‘parallellism', ‘'non-determinism', etc. o
x: 3
\::'
6‘:" 5.7 Implementation Independent NS
p By an Ada FD being 'free from implementation bias', we mean some- :::'f
f-‘ thing similar to permissiveness: namely, that the definition '.»‘\"
does not unduly favour one style of implementation over another :::
"i where such choices were not intended by the language architechts. o
b
O."l
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5.8 Basis for Processor Development

By an Ada FD being ‘'suitable as a basis for interpreter, compi-
ler, and support system development', we mean that the develop-
ment covers each and every aspect of the language, and that
this coverage can be secured through use of the definition.

-~ Correctness of Processor Development

By an Ada FD being ‘'suitable as a basis for proving correctness
of Ada processors', we only mean the constructive, a priori,
proof of correctness of the development of an Ada processor
(not any, a posteriori, given such processor). Thus, we are,
here, only thinking of an Ada FD lérving as the departure point
for actual processor development. And we primarily think of
this development as transforming, refining and enriching an Ada
FD, via stages of development, ie. via abstract and con-
crete designs, to actual implementations (code).

5.9 Basis for Validation

By ‘suitable as a basis for validation', we mean: it should be
possible to construct a test-suite of Ada programs for the pur-
poses of testing any given compiler.

The derivation of test programs should be transparent: i.e. a
human should be convinced that these are "real"” test-programs.
The derivation should be "exhaustive”, i.e. convincingly span a
necessary spectrum of programs. The derivation should foresee a
range of implementations: i.e. the test programs should not
only test the 'language structure'’, but also foreseeable ‘'proces-
sor structures'.
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E: == Conformance with ACVC Test Suite [3] o~
: 09
By ‘conformance between an Ada FD and the ACVC test suite', is N7
E meant one of the following: W
-
z )
gi (1) Ignore this conformance and “verify" conformance :
between LRM and an Ada FD. .::l':j
‘E (2) Use informal reasoning to argue that the ACVC test pro- f:
grams are indeed processed correctly by the Ada FD,
.o;f.'_ or, which may be a posaibility, show ACVC test programs .j’,:C:
e to not be correct test programs (i.e..testing contrary JE
. to the intentions of the language designers, etc.). o
l:-: ':-:':.
-, . -::‘.
(3) Use formal proof techniques, manually constructed and ::f-::
b verified, to guarantee what (2) sets out to achieve. C::::
- (4) Use formal proof techniques, mechanically verified, to ‘
x’. u'.:a'
5 achieve (2). e
- :‘\;
AL
i (S) Use prototyping techniques (see sect. 5.12) to a- =
chieve (2). DS
};:.' (6-7) Use formal compiler derivation techniques (see sect. ::::::
5.8) to achieve (2). L
r (8) Execute the Ada FD itself, directly, to achieve (2). :';f-:
L -\-..
)y :::_".
. ;":"
5.10 Basis for Proof Systems ~
% | L
When saying that an Ada FD could be ‘suitable as a basis for s
- proving correctness of specified Ada programs', we assume that ‘;-
i'i: the Ada programs are somehow specified, i.e. that certain as- e
sertions are made regarding their properties, and then that
;:Q the definition 'formally’ permits these to be shown to hold. ‘_:'
e o3
%k

This either assumes that the definition is expressed in the

form of a (set of) proof system(s), or requires that a proof

system (or set of proof systems) is derivable from the defini-
i" tiono
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5.11 Mechanizable

By an Ada FD being ‘'mechanizable’, we mean that it be machine
processable.

Reasons for wanting ‘mechanizability' are many-fold:

(1) It would facilitate maintenance, and, therefore that an
Ada FD is kept up-to-date. See sect. 5.15.

(2) It would facilitate correlation to other mechanized
Ada documents: the LRM, ANNA, DIANA, etc. See sect. 5.13.

(3) It could facilitate scientific experiments in the areas
suggested in sect. 3.6.

5.12 Basis for Prototxging

The act of Ada prototyping leads to a prototype Ada compile£ or
translator, and typically involves transliterating, if possible,
the Ada FD directly into some high level executable code, for
example SETL [30]. Rapid prototyping means the speedy, inex-
pPensive production of a piece of software that is acceptable
as a vehicle for a number of customer “testing” purposes.

S.13 Correlatable

By an Ada FD being ‘correlatable', we mean the systematic,

exhaustive, and unambiguous mapping of the formulae of an Ada
FD to the Ada LRM.
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5.14 Basis for Document Derivation

By an Ada FD being 'suitable as a basis for writing user langua-
ge reference manuals' (etc.), we mean that such informal texts
should be reasonably easy to develop systematically from the
Ada FD, and should be easy to relate back to the definition,
e.g. so that their 'completeness and consistency' can likewise
be asserted. Here, we are thinking of a wide variety of informal
documents: reference manuals for, naive, mature, and sophisti-

cated programmers, respectively, for implementors, for validators,

etc.

5.15 Maintainable

By an Ada FD being maintainable, we mean that the entire FD be
computerized in such a way that a number of tools can be
developed for browsing through the FD, for following correla-
tions between the FD and the LRM (and possibly the Rationale),
etc. The MENTOR [45) system appears to be a good candidate for
support for developing Ada FD maintenance tools.

5.16 Assumptions

The above, more-or-less direct requirements, are based on a num-
ber of assumptions [16]:

(Al) “The Ada language is 'complete and consistent'"

To the extent that work on a formal definition of Ada
shows this not to be the case, an arbitration procedure
could be established to secure ‘'completeness and consisten-
cy'.

The position of the current Ada FD project is this: if an
inconsistency or incompleteness is properly identified,
then no formal definition will be given, i.e. the discre-
pancy in question is left undefined!




(A2) “There are Formal Definition Techniques that will sa-

tisfy all of the above Requirements."

To the extent that this is not found to be the case (which
we can immediately assume (1)), an arbitration procedure
must be established for deciding upon acceptable compro-
mises in definition style and/or in the use of composite,
overlapping definition alternatives.

The position of the current Ada FD project is this: the
trial definition project sub-phase together with its
external reviews will constitute such a procedure.

5.17 Derived Requirements

The above (more-or-less direct) requirements and assumptions
imply a number of derived requirements.

(D1)

(D2)

(D3)

(D4)

(DS)

‘Complete and Consistent' implies "Absence of Ambiguities”.

‘Permissive’ and 'Free from Implementation Bias' implies
“No Over-Specification”.

‘Accessible and Referenceable' implies "Maintainable"“, and
“Modular”.

‘Suitable as a Basis for Implementation’' implies that one
can derive "Implementation Guide-lines" from the defini-
tion.

'Formally Defined' implies the possibility of "“Language
Definition Tools"™ such as rapid prototypers for language
(subsets), definition (‘consistency and completeness')
checkers, etc.
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F‘. 6. THE ROLE AND SCOPE OF THE Ada FD :: :
-t
~ )
i
‘%

%
:
)
:

This chapter summarizes the position of the current project -
w.r.t. the idealized requirements listed in sections 5.1-5.15 ‘
inclusive. ',f

i:,'A:‘,
o oy
ol 4
L]
-~ >

(1) Legal Contract: time is probably not yet ripe for the

p computing community (suppliers and consumers) to rely on and to Ry
- trust an Ada FD to constitute a legally binding contract in a ’z
r.. court of law. ’:,‘.
- To the extent that we satisfy all subsequent requirements,
Z::- one may hope to see the present (legality) requirement being ‘_::::'
" achieved. - 5-5
& 2

Thus, we conclude that our aim is to fulfil this requirement. e

v"

;": (2) Consistent and Complete: we most emphatically desire to :"'_&
g‘h' :‘:\
T achieve this requirement. A stumbling block may, however, be o
.‘ the (pragmatic) "interpretation"” we attach to various notions 222
of erronecus, undefined, ‘'pragma shared', ‘'permissive’ (e.g. in 5
case of non-deterministic features), etc. - as opposed to "_:
o RS
;.j: the similar "interpretation” of our audience: the Ada Language f::
o designers, standardizers, other formalists, validators, etc. ::Z*-
o (3) Comprehensible and Concise: again, we most emphatically t."'
. desire our FD «0 satisfy - these requirements. One of our :.
F'-j approaches to achieving this is to correlate the FD minutely to .
the LRM; another is to annotate it, likewise minutely, to also ‘
W give an English language rendition of the formulae. This process N
o of achieving such acceptable correlations and annotations is f-j;'
. expected to feed back to the formula presentation itself. ;'::
- (4) Correct and Believed Correct: we wish to achive also _
b this goal, and basically through the same means as mentioned ~;:
f.h ...'-
N in (3)0 ::;\
ﬁ’ g
A
-:-: o
K N
o
) ) . . N
[ | B-167
'-. ! f."'
Ly
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(5) Accessible and Referenceable: also this requirement is of
utmost concern to us. We most definitely wish to achieve also
this goal.

(6) Permissive: insofar as we are able to identify all such
language properties (as have permissive, implementation-wise
“non-deterministic" properties), we sha:ll be expected to also
have the Ada FD be permissivel

(7) Implementation Independence: the Ada FD will most likely be
model-oriented. Denotational (i.e. model-oriented) definitions
do not necessarily bias some implementation choices over others.
The current Ada FD will, similarly to what was indicated under
point (6) (permissiveness), strive to exhibit implementation
independence.

(8) Procesor Development: the current Ada FD project, basically
having its root in a model-oriented, but abstract way of defin-
ing Ada, will strive to produce a definition which can serve as
a departure point for interpreter, compiler and other Ada tool
development.

For classical denotational and operational definitions, like
the DDC formal description of Ada [e.g. 21], well-known methods
exist [47] which allow the systematic to rigorous development
of compilers from the language definitions. The current project,
although claiming that it will strive to produce an Ada FD
which should serve as a basis for processor development, will,
however, not address the specific issues of how to formally
derive such processors from the currently contemplated Ada FD.
How, then, do we justify our claim ? By reference to the
model-oriented, yet abstract nature of the planned Ada FD, and
by reference to e.g. [47]!

We believe that the planned Ada FD will be such that either
existing formal derivation (transformation, enrichment and
refinement) techniques apply readily, or that it will spur the
development of such techniques.
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(9) Validation: a study will or might be conducted into the
feasibility of the Ada FD serving as a basis for deriving
"ACVC-like" test programs, and a study might be made into
the feasibility of using the Ada FD to prove properties of
ACVC-like programs. No attempt will, however, be made in this
pProject to examine any serious fraction of the ACVC test suite
for conformance to the Ada PFD (or vice versal). Thus, it is
not within the scope of this project to study other than the
“basic" aspect of section 5.9 and point (1) of the same sections'
conformance part, and to study feasibility of its points (2-3-4).

(10) Proof Systems: a study might/will be made of the feasibility
of deriving (a) proof system(s) from the Ada FD. It is, however,
not a requirement that the currently planned Ada FD must be
gu.anntood to yield such (a) proof system(s).

(11) Mechanizable: the current Ada PD together with the LRM,
its correlation to the LRM, its LRM-independent annotation, and
various, not necessarily all-including, aspects of the underly-
ing semantics of its specification language(s) will be mecha-
nized. That is: a computerized tool set will be developed for
the support of the activities mentioned in section 5.11.

(12) Prototyping: it is not a requirement of this project that
the current Ada FD become the basis, or be shown feasible as a
basis, for the rapid prototype development of, say, an interpre-~
ter. -

But, along the lines of point (8) above, it is of interest to
the current project to ascertain the extent of correlation be-
tween the Ada FD and the NYU/Ada ED interpreter written in SETL
{30]. The current project does, however, not provide for a
study of this, but would, in case such a study was undertaken,
be most willing to co-operate, including striving to achieve
“correlation”.
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“ (13) Correlation: it is a definite requirement that the de- f-f
veloped Ada FD indeed be strongly, clearly, transparently and .

Yy completely correlated to the LRM. &
&

. (14) Document Derivation: it is likewise (to point (13) above)

AN

b a definite requirement, imposed by the developers, themselves, :3

t‘ that the Ada FD be so expressed (presented) that it lends ek

itself nicely to the derivation of a number of reference

j’é' manuals for different levels (naive, novice, mature, experienced .}'

) and sophisticated) of programmers, implementors, scientists

v (formalists), etc. The current project, however, only calls r"

- for one such informal document to be systematically derived. -

) . . A

- (15) Maintability:s it is a definite requirement that the

[ current Ada FD be maintainable and as a derived requirement

: we find that point (11) then arises! R
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7. Conclusion v

== =
g
¢

We have performed cursory and enumerative, rather than deep and

3

x
analytical, studies of a number of classes of aspects of Ada, '

E each leading up to our enumerations, qualifying and quantifying e
Y

{ a number of requirements that we would wish the currently devel- AN

oping Ada FD to satisfy.

DACA '
-
ey

-
¥}

We submit this overview study to the international Ada community

o
t‘ for its careful and co-operative scrutiny. We invite serious ,.E’
o comments, and humbly expect both negative and positive critique. '

We declare ourselves most ready to seriously evaluate all :{.:
:'_j comments for their proper disposal (including inclusion in a :__.-
) possibly reworked final version of this report) referred to, in "':
" the abstract, as (II). ~lr.
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Appendix A: MNEMONICS W
" i :
Once scientific ideas reach the market place their abstract ;::
‘i'.-'-: nature gets instantiated, and commerical abbrevations result. N
v Even in Academica we see such an unfortunate trend (e.g. oY,
- ACT/ONE, ANNA, CCS, Cnet, CSP, DIANA, DSL, LARCH, LCS, Meta- -
:::f IV, ML, OBJ, SIS, SMoLCS, and SOS). Bureaucracies foster "\.
“mnemoniconiae” (i.e. ANSI, BSI, CEC, CHILL, CNR, DoD, ECMA, o
= 1EI, LCB, LMC, LRM, MAP, MIL-STD, and WG). To add e
> o
= insult to injury we add our own: CRAI, DDC, FD, and MTLI
.. r_:.
Abbrevations \ '
~ -
.ACT/ONE b
;:'; ACVC Ada Compiler Validation Capability N
i ADT Abstract Data Type (usually algebraically specified). ~
ANNA ANNotated Ada T
;, (D. Luckham et al.). :::
- Y
A
' ANSI American National Standards Institute. bR
. f.‘t‘
ASL Algebraic Specification Language ','_
'.:}j (D. Sanella and M. Wirsing). :
ZE:: BNF Backus Normal Form context free grammar. :j:::
o BSI1 British Standards Institute. :::
o N
L]
CCITT Comité Consultatif International de Telegraphie et “
- Telephonie. 3; :
t". * !
”
o cCs Calculus of Communication Systems o
i (R. Milner).
f.-j' CEC The Commission of the Furopean Communities. ;:?'.:'
X
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CHILL CCITT High Level Language. .I:
N o
. CLEAR (not a mnemonic, just a funny) -l
: Name of a «calculus for combining algebraically ;j
specified ADTs.
(R. Burstall and J. A. Goguen). :ﬁ
: Cnet Campus net (Italian CNR project). -c
CNR Consiglio Nazionale della Ricerche )
> (Italian Council for National Research). :3
i CRAI Consorzio per Ricerca e le Applicazioni de Informatica. .
Y. CSP Communicating Sequential Processes
- A
2 (C.A.R. Hoare). s
-ﬂ: \‘
v DDC Dansk Datamatik Center. i
DIANA Descriptive Intermediate Attributed Notation for Ada )
3
DoD (US) Department of Defense. *
.|
DSL Denotational Semantic Language -
- (P.D. Mosses).
N S:
" D-SMolLCS Denotational SMolLCS. -
: <
9 ECMA European Computer Manufacturers Association. e
. FD Formal Definition. ;§
-
. IEL Istituto di Elaborazione della Informazione. S
: ~
: 1s0 International Standards Organisation. o
L) R L
= LARCH (Not a mnemonic, but a) Name for an algebraic ii !
; (semantics) specification language (family) o
. ) (J. Guttag and J. Horning). j
‘ J
; !! q
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Language Control Board.

Logic for Computable Functions
(R. Milner).

Labelled Control Systems.
Labelled Event Systems.
Language Maintenance Committee.
Language Reference Manual.

Multi-Annual Programme in the field of data proces-
sing (of the CEC).

(Not really a mnemonic:) Meta-Language number four
(rhymes with: Metaphor)

(H. Bekié, D. Bjgrner, C.B. Jones, P. Lucas).
MILitary STandarD.

New York University.

Meta Language (as in Edinburgh/LCF)
{R. Milner).

Methods, Techniques, Languages (Ada FD)
Algebraic semantics OBJect specification language.
SET (Programming) Language (NYU).

Semantics Implementation System
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S SMOLCS Structured, Monitored Linear Concurrent Systems
(E. Astesiano). !’?_
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- sos Structural Operational Semantics .
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Appendix B: TERMINOLOGY

In any project, one should start out by carefully establishing

and defining the terminology, and throughout the project one -
should critically maintain and adhere to this terminology. by
The terms name the important concepts. Hence, the terminology e,
should also be part of the product.

i
¥

I
AR

The present lcctibn outlines only a Qery embryonic form of a

o terminology. It is part of a continuing activity of se-
- parately establishing a 1arger. more comprehensive, termi- |
nology document. ﬁj
-
A <
Yy TERMS Ny
-
- Abstract Syntax N
. L4
Definition of a class of objects which emphasizes their : R
" contents and structural relationship. 1In contrast to a P
E% concrete syntax an abstract syntax ignores the choice of =
lexical elements and their ordering in sentences of a . .
language - more specifically a set of domain equations or a o
- set of predicates, which define classes of abstract object. X
e ~
Assertional (Pre-Post Specification) Language - -
i An assertional specification language is one in which functions 3
and operations may be defined by predicates over their arguments -
~ and results. ?
S -
-~ (In general, this technique defines a relation, and it is :
understood that such a relation is satisfied by any sub-relation
with the same domain, in particular by a function with the same )
Dy domain which is a sub-relation). &
Combinator ﬁ
- Ot
) A combinator is a syntactic rule which, when applied to a R
(usually fixed) number of formal documents, produces a -
- . resulting formal document. (Typically, a combinator is one .
. or more symbols with rules for positioning input formal "
A documents in relation to its symbol(s) to form a new document 1
with a defined semantics.) Since the result of applying a v,
“a ) combinator is a formal document, there has to be a rule which {
W gives the semantics of the resulting document. v
Concrete Syntax .,
[ -
e A syntax which includes the definition of lexical elements f
’ and their ordering. -4
'i ~]
’l
<. "
l\ °
™ "
<
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&) V.
e Constructive Specification
%, -
" --game as model-oriented specification. !!
b
o :
Correctness !
,, - N
o The concept of correctness only has meaning in a context of
e a formal method which requires the generation of at least one -
T pair of formal documents, A and B, so that A is considered a
R to be a prescription for the production of B. B is then :
"W correct if it satisfies its prescription A. Typically, there
o will be several series of pairs (A,B), (B,C), (C,D). etc. _
2, -
Data e
A .
.- A collection of objects, and operations involving these (and 4
- possibly other) -objects.
.\ -
™ Decomposition ]
’5 A transformation from A to B so that there are functions/ )
13 operations in A the behaviour of which is specified by a e
- composition of functions/operations in B. e
5 .
' Deductive Specification !
) -=-game as property oriented specification.
2 Design -
The supplier's statement of how the specification will be -
o implemented. Such statements may exist at various levels of e
- detail.
N In the context of a formal method, a design is a transformation -

of a specification This transformation embodies decisions as -
to how the specification will be implemented.

' % &

Document

Any identifiable, finite piece of recorded information produced
J during a software development. A document may be expressed

in a formal language or not, and may be electronically recorded
7 or recorded by other means. (Thus, a program, a specification, o
- and doodle are all documents if recorded and identifiable ~
: during a software development). o
Ca
: <
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Enrichment

A transformation which includes the addition of functionality;
in algebraic or denotational terms this could entail the addition
of operations.

B

EZ Fault Tolerance
Software is fault tolerant if it behaves correctly despite
*? spurious failures in its input.
>
S Formal Development
Eﬁ A development in which each generation of a transformation

or implementation is accompanied by a formal proof of its
" correctness.

Formal (Document)

'5 A document expressed in a formal language.
ts Formal (Language)
3

Having a precise semantics and syntax. (The syntax may be abstract).

‘ Formal Method

- A (software development) method whose guidelines are forma-
Eg lized and which requires the production of specifications

" in a formal language, in addition to the implementation (1l).

Formal Proof

-

A procf in which each step is the application of an axiom of

{ the inferential system or a formally proved theorem. The
% result of each step is expressed in a formal language.

5; Functional Specification

-~

A functional specification is one which describes and prescribes
- the behaviour of its acceptable implementations in the follow-
ing restricted sense:

{(a) The only behaviour described is properties of the infor-

3 mation content of the information input to and output from :i57
? the implementation. No reference can be made to any o ]
‘ other information, such as the passage of time, the internal %ﬁ‘
representation in the implementation, etec. N
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N N

3 (b) The only properties which are described are those which

2 can be mathematically described or modelled, ]

Dy

(c) The claim that the implementation possesses these
properties must be subject to refutation.

.
oafal

‘of o
AN

.o *
E A

Generic Specification

v A
Iy A formal document which defines a class of specifications, (A -
o parameterised specification is an example).
e )
. K
Genericity e
N Genericity is a general principle comprising an attribute »
. of a document, process, method or other concept. It is the o
o attribute of requiring a small fixed-size change to the
v document, process, etc., in order to achive a change in .
- applicability of the doucment, process, etc. i;
’i' Implementation -
- An executable specification which fulfils all the requirements.
Interpretation/$S lic Execution !
,; The interpretation or symbolic execution of a formal specifi- )
N cation or an abstract design consists of a mechanically Ay
) automated process of displaying properites of its implementations. -
, Loose Specification x
- --same as Generic Specification. )
-; Maintainability -
, Software is maintainable if the insertion of a change can be ”
. unambiguously and uniquely located through specification :}
- design, and implementation.
X 3
< Method -

X A method is a set of guidelines or rules for how to carry -
*y : out a process (e.g. software development). Typically, the .
A guidelines refer to specific tools which are to be applied y
> using certain techniqued and in a prescribed order.

» - » , ""-.F A'. '-- 't . e T
M . . - ~ - .
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Methodology

The science of methods. It is here used to denote a framework
for a class or set of such methods.

=

Model Oriented Specifications

A specification (or design) which denoted a (theory of)
mathematical model(s), i.e. an object, or a class of objects

. S

o
guaranteed to exist.

:~ (In a model oriented specification language the specification

> language date types are typically definable in the following
way. There are a fixed finite number of basic types supplied

. in the language. Their definitions may be axiomatic in style.

}; Further data types may then be defined by applying type com-

~ binators of which there is a fixed repertoire in the language,
in a possibly recursive manner.)

h.

Modular(ised) Sgccifiﬁation

“ A specificaition is modular(ised) if it is expressed as the
composition of specifications.

i Non-functional Specification .

) A specification which prescribes that its implementations
" shall possess a set of properites which do not comprise a
N functional specification (q.v.)

Parameterised Specification

Consider a specification combinator to the following form.

] The combinator is a formal document containing place~holders.
L The formal document becomes a specification if and only if

L; the place-holders are associated with and semantically repre-
sent other specifications. Such a specification combinator
is called a parameterised specification.

Performance

Performance is a quality of software which is not expressible

{u

-~ within its functional specifications. The performance of
software is the economy with which it exercises the resources

0 of its environment. (Such resources are typically computer

_3 storage and c.p.u. time but, may be extended to include

resources of a wider environment, such as fuel consumption of
a software controlled industrial process.)

---------------
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.f Programming
(X .
The activities involved in requirements definition, speci- w,
N fication, design and implementation. -
(‘-
'I o]

A
323

Property Oriented Specifiaction

A specification is property oriented if it defines the
external characterisitcs only.

S

A

o

Y

e A property oriented specification language is one which

S permits the definition of data types by defining new functions -
o in the sorts of which the data type to be defined occurs, i
Y and then listing properties of the new functions. This in -

general defines a class of data types, and there will be
defined an "interpretation” which will identify (to within -
isomorphism) a unique data type from this class. An alternative -

. to the last provision is that of a loose interparation in -
which the data type is not further identitied. The specification .
- which reusults is then parameterised, and will become a Y
plle proper specification when an instatiation of the data type is ‘
< given which define it uniquely (to within isormorphism).
..‘I \v
o :ﬁ
}5 Properiety, Proper
. i
-y Propriety (adjective: proper) is the attribute of software =
%; of fulfilling the functional and non-functional (q.v.
s expectations of its users. (If the requirements documents -5
1l have been adequately formulated, they should be caputured therein.) X
[ ..
La
Prototype -
:: An executable model that conforms to a subset, or is a
. projection of the requirements of the specification.
)
Prototyping
LN The act of constructing a prototype. Typically involved ,ﬁ;
;} transliterating a specification or an abstract design into -
! some high level executable code. i
4 N
~ Refinement -
¢, A structure preserving decomposition of specification A to (a Cj
.i possibly abstract) design B, or, similarly, from design B to W
\ design C, etc.
W o
]
y
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Keliability

Software is reliable if it is both correct and also clearly
rejects input explicity excluded from is specification.

Requirements

The customer's statement of his needs.

Requirements Analysis

An analysis of the customer's needs, cf. contractual model.

Rigorous Development

A .development in which each generation of a transformation,
refinement, or enrichment gives rise to a proof obligation,
which can be accompanied by a rigorous proof.

Rigorous Proof
A rigorous proof is a demonstration designed to convince

others (that a formal proof could be generated) of the truth
of some assertion.

Robustness
Software is robust if changes to it do not hamper its quality,

i.e. its conformance to its functional and non-functional
specifications (q.v.).

Satisfy

A formal specification B satisfies a formal specification A
if B exhibits all the behaviour specified by A.

Software Engineering

The total support process of producing and delivering implemen-
tations and maintaining them, starting from requirements.

Specification

The supplier's description of the functional behaviour of
the implementation and the process of producing it.

2 el e A T T AT A AT AT A
"-'N ‘.u .’ N ) 2l ¢ 8 -

S
>

CAAAAR
aTata,
XY,

=

7

N N T T
> 7 l’sl‘

ﬁ-((“

4

- e -
S
-
!\l'..
o n

[APSPAAY
a .l .' .'

-

ok

-

LA

s

™.
y
.

39 "
S

;‘4

»

e et e
F:' .v~ ':'.al'.v g '.

,-
A

-

..,,-,.
oy J /',
P

|




AN A,

Ay

ey

[N

XAGERA

3

Pa, S N

- o
e 8 a2 2 4

P Y

4

P N N

LRV S A o e et s B e R i Ea S i

The

Dratt " B-8 -'i.-l
ition
gﬂ&&e of the Ada Formal Definition: Terminology

Specification Co sition

The process or result of transitively applying a number of ii
combinators to a number of specifications to produce a '
resulting specification.
%
Specification Language &
A language in which specifications can be expressed. -
Specialization of Specifications
The process of transformning a generic specification into a =
formal document whih defines a sub-class (possibly one)
of specifications.
Support System ..
An integrated collection of tools supporting some particular ii
kind of activity in the software field. The activity may be
broad or narrow. b
<
Symbolic Execution
-=-game as interpretation. !!
Syntax Si
A definition (usually formal) of the allowable sentences of ‘
a language. . |
..‘:
Systematic
A systematic method (as oppoesd to a rigorous or formal one) Sﬂ
is one comprisinfg rules and/or guidelines for the ordered )
production of (mostly informal) documents within a development
process. A systematic development is one carried out according
to the rules and/or guidelines of a systematic method.
Testing (1) =
-l

The systematic and organized search for a counter-example to
the claim that a specification/design/implementation is correct.

B
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Testing (2)

The (possibly partial) execution of a specification in order
to demonstrate that it fulfils some non-functional requirements
(and@ hence to demonstrate its propriety).

Tool

An object that can be used in the process of developing (and
maintaining) software systems. Tools include both computerized
as well as non-computerized (manual) tools.

Transformation

The process or result of generation a formal specification B

from a given formal specification A such that B satisfies A,
where the internal structure of B is normally not a decomposition
of that of A. The term is often used in the context of a
machine-generated or machine-assisted transformation.

Wherever no specific qualification is made, transformation
will include the concepts of refinement and enrichment.

User

Someone who uses Ada FD.

Validation

A process within the contractual view of software development
which improves confidence in the correctness of a specification,
design, or implementation, or the claim that a specification,
etc. fulfils the requirements. This could be the production

of a proof in the former case.

Verification
A proof that a transformation, enrichment, or refinement is correct.

Or, alternatively: A process within the contractual view of
software development which improves confidence in the well-
formedness and non-degeneracy of a specification/design/im-
plementation. This could be the production of a proof.
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